Analysis of Additional Generation Planning in the Batam-Bintan Power System to Improve Reliability
DOI:
https://doi.org/10.62146/ijecbe.v3i2.133Keywords:
Batam-Bintan Power System, Reliability, Peak Load Projection, Load Flow SimulationAbstract
The Batam-Bintan electrical system encounters operational challenges due to inadequate new power plants being commissioned to meet the increasing demand. Bintan Island's supply dependency on Batam Island through the undersea cables and 150 kV SUTT places operational stress systemically and adds vulnerability to disruption. The focus of the research is to optimize the system reliability through peak load forecasting up to 2030 and refining the strategic locations and sizes for the new power plants. The calculation forecast employs a second-order polynomial regression method, whereas the load flow analysis is performed with DIgSILENT PowerFactory 2022 software. Based on the research, the peak load is expected to grow from 675.2 MW in 2024 to 1,322.1 MW by 2030. To attain reliability, 940 MW of additional generation capacity is required, which is made up of 580 MW of DG (distributed generation) and 360 MW of central generation. The placement of DG is focused on substations that are overloaded or approaching overload, while centralized generation is positioned where power loss is lowest. The evaluation results indicate the additional generation makes it possible to maintain voltage stability, reduce dependence on PLTU XYZ and meet the reserve power requirement of a 35% power margin.
References
M. A. Syarief, “Sistem Informasi Laboratorium Teknik Elektro UMY Berbasis Web dengan Framework Laravel Crudbooster”, Skripsi, Universitas Muhammadiyah Yogyakarta, 2017.
Eteruddin, H., Setiawan, D., & Hutagalung, P. P. P., “Evaluasi Jaringan Tegangan Menengah 20 kV pada Feeder 7 Peranap PT. PLN Persero Rayon Taluk Kuantan,” Seminar Nasional Pakar, 2020, pp. 1.4.1–1.4.6.
R. Billinton and R. N. Allan, “Power System Reliability in Perspective,” IEEE J. Electronics Power, vol. 30, pp. 231–236, 1984.
R. Gianto and H. Priyatman, “Optimalisasi Peralatan Kontrol Sistem Tenaga Listrik untuk Meningkatkan Kestabilan Sistem Berukuran Besar,” Transmisi, no. 17, pp. 218–225, Oct. 2015.
Y. Gupta, S. Doolla, K. Chatterjee, and B. C. Pal, “Optimal DG Allocation and Volt Var Dispatch for a Droop Based Microgrid,” IEEE Trans. Smart Grid, vol. 12, no. 1, 2021, doi:10.1109/TSG.2020.3017952.
S. Kaur, G. Kumbhar, and J. Sharma, “A MINLP Technique for Optimal Placement of Multiple DG Units in Distribution Systems,” Int. J. Electr. Power Energy Syst., vol. 63, 2014, doi: 10.1016/j.ijepes.2014.06.023.
E. Mahdavi, S. Asadpour, L. H. Macedo, and R. Romero, “Reconfiguration of Distribution Networks with Simultaneous Allocation of Distributed Generation Using the Whale Optimization Algorithm,” Energies, vol. 16, no. 12, Art. 4560, 2023, doi:10.3390/en16124560.
K. S. El Bidairi, H. D. Nguyen, T. S. Mahmoud, S. D. G. Jayasinghe, and J. M. Guerrero, “Optimal Sizing of Battery Energy Storage Systems for Dynamic Frequency Control in an Islanded Microgrid: A Case Study of Flinders Island, Australia,” Energy, vol. 195, Art. 117059, 2020, doi: 10.1016/j.energy.2020.117059.
A. K. ALAhmad, “Voltage Regulation and Power Loss Mitigation by Optimal Allocation of Energy Storage Systems in Distribution Systems Considering Wind Power Uncertainty,” J. Energy Storage, vol. 59, Art. 106467, 2023, doi: 10.1016/j.est.2022.106467.
Q. Li, Y. Tao, Z. Li, Y. Zhang, and Z. Zhang, “Simulation and Modeling for Active Distribution Network BESS System in DIgSILENT,” Energy Reports, vol. 8, 2022, doi: 10.1016/j.egyr.2022.01.113.
N. Amral, D. King, and C. S. Özveren, “Application of Artificial Neural Network for Short Term Load Forecasting,” in Proc. Universities Power Engineering Conf. (UPEC), 2008, doi:10.1109/UPEC.2008.4651477.
S. Sunardiyo, “Studi Analisis Aliran Beban (Load Flow) Sistem Tenaga Listrik Implementasi pada Jaringan Kelistrikan di UNNES,” Teknik UNISFAT, vol. 4, no. 2, pp. 117–128, 2009.
R. P. Wijayanto, “Optimasi Perencanaan Pengembangan Pembangkit Listrik Jawa Bali Tahun 2015–2030 dengan Algoritma Genetika,” Tesis Magister, Fakultas Teknik, Universitas Indonesia, 2013.
A. Shabani, H. Hosseini, H. K. Karegar, and S. Jalilzadeh, “Optimal Generation Expansion Planning in IPP Presence with HCGA,” in 2nd IEEE Int. Conf. Power and Energy (PECon), Johor Bahru, Malaysia, Dec. 1–3, 2008.
Y. U. Farihah, “Optimasi Penempatan dan Kapasitas Distributed Generation Menggunakan Metode Differential Evolution untuk Meminimalkan Rugi Daya,” Tugas Akhir, Jurusan Teknik Elektro, Institut Teknologi Sepuluh Nopember, Surabaya, 2015.
K. Dab et al., “Sensitivity Analysis of Exogenous Variables for Load Forecasting Using Polynomial Regression,” in Proc. IECON, 2019, pp. 2560–2565, doi:10.1109/IECON.2019.8927167.
G. De Nicolao et al., “Short Term Load Forecasting: A Power Regression Approach,” in Proc. PMAPS, 2014, pp. 1–6, doi:10.1109/PMAPS.2014.6960648.
N. Abu Shikhah et al., “Medium Term Electric Load Forecasting Using Multivariable Linear and Non Linear Regression,” Smart Grid Renew. Energy, vol. 2, pp. 126–135, 2011, doi:10.4236/SGRE.2011.22015.
J. Roldan Fernandez et al., “Modelling of Transmission Systems Under Unsymmetrical Conditions and Contingency Analysis Using DIgSILENT PowerFactory,” in PowerFactory Applications for Power System Analysis, pp. 27–59, 2014, doi:10.1007/978-3-319-12958-7_2.
R. Villena Ruiz et al., “Learning Load Flow Analysis in Electric Power Systems: A Case Study in PowerFactory,” in Proc. 45th MIPRO Conf., pp. 1357–1362, 2022, doi:10.23919/MIPRO55190.2022.9803465.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 International Journal of Electrical, Computer, and Biomedical Engineering

This work is licensed under a Creative Commons Attribution 4.0 International License.