Optimization of Preventive Maintenance Planning for the Motor Cooling System at PLTGU Using Differential Evolution
DOI:
https://doi.org/10.62146/ijecbe.v3i3.132Keywords:
preventive maintenance, Combined Cycle Power Plant, monte carlo, differential evolution, maintenance, NHPP, Cost optimizationAbstract
Determination of the optimal preventive maintenance time of the three-phase induction motor (88WC) during operation at 380V in the cooling system of the Semarang Gas and Steam Power Plant (PLTGU) is done by combining the Power-Law Non-Homogeneous Poisson Process (NHPP) model and the Differential Evolution (DE) Algorithm to achieve minimum total maintenance cost. The parameters of NHPP, β = 1.75 and η = 7,198.99 hours, are estimated using the least squares method from the historical failure data for the 2020–2024 period, recording failures beyond 20,000 operating hours. The DE optimization results provide the optimum PM time of 371.60 hours to reduce the total cost from IDR 28,198,935 (for the 500-hour interval) to IDR 20,299,822, achieving a cost savings of 38%. Validation is performed using Monte Carlo simulations with 1,000,000 iterations that yield a pre-optimization failure probability of 0.56%. Sensitivity analysis using a ±20% parameter variation also proves the model's robustness. This data-driven framework is thus anticipated to increase the reliability and cost-effectiveness of the PLTGU cooling system and is scalable to other power-generating facilities
References
Badan Pusat Statistik, "Statistik Listrik Nasional 2020," Jakarta, BPS, 2021.
Geng, D. A., Zhang, S., Wang, D., Gao, J., & Dai, L. (2011). The optimization analysis of equipment maintenance based on Monte-Carlo simulation. Advanced Materials Research, 189-193, 424–429. https://doi.org/10.4028/www.scientific.net/AMR.189-193.424
Chen, T.-L. (2008). Real-time turbine maintenance system. Expert Systems with Applications, 35(3), 1377–1385. https://doi.org/10.1016/j.eswa.2008.10.019
de Pater, I., & Mitici, M. (2021). Predictive maintenance for multi-component systems of repairables with Remaining-Useful-Life prognostics and a limited stock of spare components. Reliability Engineering & System Safety, 212, 107761. https://doi.org/10.1016/j.ress.2021.107761
Salim, S. E. (2012). Getting the right mix of maintenance strategies with historical facts. Society of Petroleum Engineers. Paper presented at the Abu Dhabi International Petroleum Exhibition & Conference, Abu Dhabi, UAE, November 11–14, 2012.
Bello, S. F., Wada, I. U., Ige, O. B., Chianumba, E. C., & Adebayo, S. A. (Year). AI-driven predictive maintenance and optimization of renewable energy systems for enhanced operational efficiency and longevity. International Journal of Science and Research Archive.
Gradwohl, C., Dimitrievska, V., Pittino, F., Muehleisen, W., Montvay, A., Langmayr, F., & Kienberg, T. (2021). A combined approach for model-based PV power plant failure detection and diagnostic. Energies, 14(5), 1261. https://doi.org/10.3390/en14051261
Ren, H., Cui, R., & Tang, Y. (2014). An optimization model for condition-based maintenance decision considering total risk of grid operation. Advanced Materials Research, 1055, 383–388. https://doi.org/10.4028/www.scientific.net/AMR.1055.383
Wu, L., & Zhou, Q. (2020). Adaptive sequential predictive maintenance policy with nonperiodic inspection for hard failures. Quality and Reliability Engineering International. https://doi.org/10.1002/qre.2788
Behera, P. K., & Sahoo, B. S. (2016). Leverage of multiple predictive maintenance technologies in root cause failure analysis of critical machineries. Procedia Engineering, 144, 351–359. https://doi.org/10.1016/j.proeng.2016.05.143
Adhikary, D. D., Bose, G. K., Jana, D. K., Bose, D. N., & Mitra, S. (2015). Availability and cost-centered preventive maintenance scheduling of continuous operating series systems using multi-objective genetic algorithm: A case study. Quality Engineering, 28(3), 352. https://doi.org/10.1080/08982112.2015.1086001
H. Wang, "A survey of maintenance policies of deteriorating systems," *European J. Operational Research*, vol. 139, no. 3, pp. 469-489, 2002.
Sabouhi, H., Abbaspour, A., Fotuhi-Firuzabad, M., & Dehghanian, P. (2016). Reliability modeling and availability analysis of combined cycle power plants. International Journal of Electrical Power & Energy Systems, 78, 696–704. https://doi.org/10.1016/j.ijepes.2016.01.007
Y. Zhang et al., "Weibull Distribution-Based Reliability Analysis," Energy Reports, vol. 6, pp. 1234–1242, 2020. DOI: 10.1016/j.egyr.2020.04.030
Perera, L., Machado, M. M., Valland, A., & Manguinho, D. A. P. (2019). Failure intensity of offshore power plants under varying maintenance policies. Engineering Failure Analysis. https://doi.org/10.1016/J.ENGFAILANAL.2019.01.011
Gonzalez, C. A., Torres, A., & Rios, M. (2014). Reliability assessment of distribution power repairable systems using NHPP. 2014 IEEE PES Transmission & Distribution Conference and Exposition - Latin America (PES T&D-LA), 1–6. https://doi.org/10.1109/TDC-LA.2014.6955225
Yucra, R. C., Beltrán Castañón, N. J., Cutipa, J. R., Huaquipaco Encinas, S., Larico, R., Pizarro Viveros, H., & Shuta Lloclla, H. (2018). An RCM implementation for wind turbine maintenance using MFEA method and NHPP model. Proceedings of the LACCEI International Multi-Conference for Engineering, Education and Technology, 1–10. https://doi.org/10.18687/LACCEI2018.1.1.500
Gao, Y., Feng, Y., Zhang, Z., & Tan, J. (2015). An optimal dynamic interval preventive maintenance scheduling for series systems. Reliability Engineering & System Safety, 142, 19. https://doi.org/10.1016/j.ress.2015.03.032
Yahyatabar, A., Najafi, A.A., A quadratic reproduction based Invasive Weed Optimization algorithm to minimize periodic preventive maintenance cost for series-parallel systems, Computers & Industrial Engineering (2017), doi: http://dx.doi.org/10.1016/j.cie.2017.06.024
Dogahe, S. M., & Sadjadi, S. J. (2015). A New Biobjective Model to Optimize Integrated Redundancy Allocation and Reliability-Centered Maintenance Problems in a System Using Metaheuristics. Mathematical Problems in Engineering, 2015, 1. https://doi.org/10.1155/2015/396864
Pereira, F. H., Melani, A. H. de A., Kashiwagi, F. N., Rosa, T. G. da, Santos, U. S. dos, & Souza, G. F. M. de. (2023). Imperfect Preventive Maintenance Optimization with Variable Age Reduction Factor and Independent Intervention Level. Applied Sciences, 13(18), 10210. https://doi.org/10.3390/app131810210
Ascher, H. (2008). Repairable systems reliability. In Encyclopedia of Quantitative Risk Analysis and Assessment (pp. 1–5). https://doi.org/10.1002/9780470061572.EQR348
Aven, T. (2008). General minimal repair models. In Encyclopedia of Quantitative Risk Analysis and Assessment. https://doi.org/10.1002/9780470061572.EQR116
L. Crow, Reliability analysis for complex repairable systems, in: F. Proschan, R.J. Serfling (Eds.), Reliability and Biometry, SIAM, Philadelphia, 1974
Wang, X., Guo, S. L., Shen, J., & Liu, Y. (2019). Optimization of preventive maintenance for series manufacturing system by differential evolution algorithm. Journal of Intelligent Manufacturing, 31(3), 745. https://doi.org/10.1007/s10845-019-01475-y
Ningsih, H. R., & Suwandi, S. (2024). Pengaruh Sistem Informasi Akuntansi dan Pengendalian Internal Terhadap Kinerja pada Perusahaan PT Semen Indonesia Distributor. Inisiatif Jurnal Ekonomi Akuntansi Dan Manajemen, 3(1), 315. https://doi.org/10.30640/inisiatif.v3i1.2137
Blinstrub, J., Li, Y. G., Newby, M., Zhou, Q., Stigant, G., Pilidis, P., & Hönen, H. (2014). Application of Gas Path Analysis to Compressor Diagnosis of an Industrial Gas Turbine Using Field Data. https://doi.org/10.1115/gt2014-25330
Okafor, C. E. (2017). Maintainability Evaluation of Steam and Gas Turbine Components in a Thermal Power Station. American Journal of Mechanical and Industrial Engineering, 2(2), 72. https://doi.org/10.11648/j.ajmie.20170202.13
Krivtsov, V. (2007). Practical extensions to NHPP application in repairable system reliability analysis. Reliability Engineering & System Safety, 92(5), 560–562. https://doi.org/10.1016/j.ress.2006.05.002
Blinstrub, J., Li, Y. G., Newby, M., Zhou, Q., Stigant, G., Pilidis, P., & Hönen, H. (2014). Application of Gas Path Analysis to Compressor Diagnosis of an Industrial Gas Turbine Using Field Data. https://doi.org/10.1115/gt2014-25330
Hanagal, D. D., & Bhalerao, N. N. (2021). Modeling on Generalized Extended Inverse Weibull Software Reliability Growth Model. Journal of Data Science, 17(3), 495–510. https://doi.org/10.6339/JDS.201907_17(3).0007
Tiwari, A., & Sharma, A. (2020). Modeling of NHPP-Based SRGM with Two Types of Faults. 2023 6th International Conference on Information Systems and Computer Networks (ISCON), 1–4. https://doi.org/10.1109/ISCON57294.2023.10112073
Suryanto, D. (2020). ANALISIS PERAWATAN AC (AIR CONDITIONER) UNIT SPLIT DUCT MENGGUNAKAN METODE FAILURE MODE AND EFFECT ANALYSIS FMEA DI HOTEL HARRIS YELLO. JITMI (Jurnal Ilmiah Teknik Dan Manajemen Industri), 3(1), 67. https://doi.org/10.32493/jitmi.v3i1.y2020.p67-75
Tee, K., & Ekpiwhre, E. (2018). Reliability analysis and growth curves modelling of fielded road systems. World Review of Intermodal Transportation Research, 7(2), 168–182. https://doi.org/10.1504/WRITR.2018.091255
Dong, Z., Chuan, L., Yongxiang, L., & Zhiqi, G. (2014). A system's mean time to repair allocation method based on the time factors. Quality and Reliability Engineering International, 30. https://doi.org/10.1002/qre.1493
Arafa, M., Sallam, E., & Fahmy, M. (2014).An enhanced differential evolution optimization algorithm.2014 Fourth International Conference on Digital Information and Communication Technology and its Applications (DICTAP), 216–225.https://doi.org/10.1109/DICTAP.2014.6821685
Balaji, G., Balamurugan, R., & Lakshminarasimman, L. (2015). Generator Maintenance Scheduling in a Deregulated Environment Using Hybrid Differential Evolution Algorithm. Consensus
Mandal, K., & Chakraborty, N. (2013). Parameter study of differential evolution based optimal scheduling of hydrothermal systems. Journal of Hydro-environment Research, 7(1), 72–80. https://doi.org/10.1016/j.jher.2012.04.001
Zio, E., & Pedroni, N. (2010). Reliability estimation by advanced Monte Carlo simulation. In Simulation Methods for Reliability and Availability of Complex Systems (pp. 3–39). Springer. https://doi.org/10.1007/978-1-84882-213-9_1
Nursyahbani, Z., Sari, T. E., & Winarno, W. (2023). Usulan Penurunan Kecacatan Piston Cup Forging Menggunakan Fishbone Diagram, FMEA dan 5W+1H di Perusahaan Spare-part Kendaraan. Go-Integratif Jurnal Teknik Sistem Dan Industri, 4(1), 22. https://doi.org/10.35261/gijtsi.v4i01.8703
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 International Journal of Electrical, Computer, and Biomedical Engineering

This work is licensed under a Creative Commons Attribution 4.0 International License.