Exploring the Potential of Electrospun Polymers for High-Performance Dental Composite: A Mini Review

Authors

  • Nadiya Sudiyasari Universitas Indonesia
  • Siti Fauziyah Rahman Universitas Indonesia

DOI:

https://doi.org/10.62146/ijecbe.v2i4.91

Keywords:

Electrospun polymer, Dental composite, reinforced material

Abstract

Dental resin composite is the most common material used in dentistry. Resin composite refers to combination of two or more materials that typically consists of matrix polymers, fillers, and a coupling agent. Fillers are essential in composites, as their presence significantly improves the material's hardness. However, beside its excellent mechanical properties, Resin composite also has several limitations, including polymerization shrinkage, a high coefficient of thermal expansion, and low wear resistance. Adding reinforcement materials such as electrospun fiber to composite fillers has shown improvement of its mechanical properties. Electrospun fiber refers to a fiber that produced through electrospinning methods. There are various types polymers used in electrospinning fabrication, such as Poly(methyl methacrylate) (PMMA), Polyacrylonitrile (PAN), Polyether ether ketone (PEEK), Polyvinyl alcohol (PVA), Polycaprolactone (PCL), and Polylactic acid (PLA). The electrospinning method utilizes a high-voltage electrical source applied to these polymer solution. Electrical voltage will initiate the formation of droplets that then elongate to form fibers. Electrospun fibers have versatile applications in dentistry and can be used as a reinforcing agent for dental composite restorations. Therefore, electrospun fibers has a lot of promising potential in dentistry, as they can produce materials with excellent mechanical properties by using a simple and efficient method.

Author Biographies

Nadiya Sudiyasari, Universitas Indonesia

Division of Biomedical Engineering, Department of Electrical Engineering, Universitas Indonesia, Depok,
Indonesia

Siti Fauziyah Rahman, Universitas Indonesia

Division of Biomedical Engineering, Department of Electrical Engineering, Universitas Indonesia, Depok,
Indonesia

Research Center for Biomedical Engineering (RCBE), Faculty of Engineering, Universitas Indonesia,
Depok, Indonesia

References

X. Zhou et al. “Development and status of resin composite as dental restorative materials”. In: John Wiley and Sons Inc. (Nov. 2019). doi: 10.1002/app.48180.

P. Stein et al. “Long Term Effect Medical Implants”. In: vol. 15 (2005).

J. Liu et al. “The development of filler morphology in dental resin composites: A review”. In: MDPI (Oct. 2021). doi: 10.3390/ma14195612.

M. G. Rasines Alcaraz et al. “Direct composite resin fillings versus amalgam fillings for permanent or adult posterior teeth”. In: John Wiley and Sons Ltd. (Mar. 2014). doi: 10.1002/14651858.CD005620.pub2.

H. Chen et al. “Improving the Physical-Mechanical Property of Dental Composites by Grafting Methacrylate-Polyhedral Oligomeric Silsesquioxane onto a Filler Surface”. In: ACS Biomater Sci Eng 7.4 (Apr. 2021), pp. 1428–1437. DOI: 10.1021/acsbiomaterials.1c00152.

A. Aminoroaya et al. “A Review of Dental Composites: Methods of Characterizations”. In: ACS Biomater Sci Eng 6.7 (July 2020), pp. 3713–3744. DOI: 10.1021/acsbiomaterials.0c00051.

M. Sevkusic et al. “The elution and breakdown behavior of constituents from various light cured composites”. In: Dental Materials 30.6 (2014), pp. 619–631. DOI: 10.1016/j.dental.2014.02.022.

L. D. Randolph et al. “Ultra-fast light-curing resin composite with increased conversion and reduced monomer elution”. In: Dental Materials 30.5 (2014), pp. 594–604. DOI: 10.1016/j.dental.2014.02.023.

P. S et al. “Fiber Reinforced Composites - A Review”. In: Journal of Material Science Engineering 06.03 (2017). DOI: 10.4172/2169-0022.1000341.

P. Banakar et al. Mechanical Properties of Angle Ply Laminated Composites-A Review. Available: www.ijopaasat.in. 2012.

D. Kendall. Building the future with FRP composites. 2006.

N. Djustiana et al. “Performance of Electrospun PMMA-Silica Nanofiber as Reinforced Material in Dental Composite Restoration”. In: Journal of International Dental and Medical Research 13.3 (2020).

Ramakrishna. An Introduction to Electrospinning and Nanofibers. Singapore: World Scientific Publishing, 2005.

B. A. Chinnappan et al. “Electrospinning of Biomedical Nanofibers/Nanomembranes: Effects of Process Parameters”. In: MDPI 14.18 (Sept. 2022), p. 3719. DOI: 10.3390/polym14183719.

S. J. Seo et al. “Electrospun Nanofibers Applications in Dentistry”. In: J Nanomater 2016 (2016). DOI: 10.1155/2016/5931946.

I. Slepchuk et al. “The Morphology of PMMA Nanofibers Electrospun from Acetone”. In: Chemistry & Chemical Technology November (2013). Available: http://ena.lp.edu.ua:8080/bitstream/ntb/27043/1/049-136-137.pdf , pp. 21–23.

J. McCabe and A. Walls. Applied Dental Materials. 9th. Oxford: Blackwell Publishing Ltd, 2008.

S. RL and P. JM. Craig’s Restorative Dental Materials. Philadelphia: Elsevier Mosby, 2012.

K. Anusavice. Phillip’s Science of Dental Material. 10th. Jakarta: EGC, 2014.

G. AH et al. “Composites Resins: A review of the materials and clinical indications”. In: Med. Oral Pathology (2006).

S. Rashahmadi et al. “Improving the Mechanical Properties of Poly Methyl Methacrylate Nanocom-posites for Dentistry Applications Reinforced with Different Nanoparticles”. In: Polymer - Plastics Technology and Engineering 56.16 (2017), pp. 1730–1740. DOI: 10.1080/03602559.2017.1289402.

A. Vats et al. “High strength and bonding achieved with new flexible EverStick posts: A case report”. In: Endodontology 28.2 (2016), p. 188. DOI: 10.4103/0970-7212.195429.

S. Lin et al. “Electrospun nanofiber reinforced and toughened composites through in situ nano-interface formation”. In: Compos Sci Technol 68.15–16 (2008), pp. 3322–3329. DOI: 10 . 1016 / j .compscitech.2008.08.033.

L. Ji et al. “Preparation and characterization of silica nanoparticulate- polyacrylonitrile composite and porous nanofibers”. In: Nanotechnology 19.8 (2008). DOI: 10.1088/0957-4484/19/8/085605.

Z. Ma et al. “Biologically Modified Polyether Ether Ketone as Dental Implant Material”. In: Frontiers Media S.A. (Dec. 2020). doi: 10.3389/fbioe.2020.620537.

S. Verma et al. “Developments of PEEK (Polyetheretherketone) as a biomedical material: A focused review”. In: Elsevier Ltd. (Mar. 2021). DOI: 10.1016/j.eurpolymj.2021.110295.

E. Alexakou et al. “PEEK High Performance Polymers: A Review of Properties and Clinical Applications in Prosthodontics and Restorative Dentistry”. In: European Journal of Prosthodontics and Restorative Dentistry 27.3 (Sept. 2019), pp. 113–121. DOI: 10.1922/EJPRD_01892Zoidis09.

Z. Czibulya et al. “The effect of the pva/chitosan/citric acid ratio on the hydrophilicity of electrospun nanofiber meshes”. In: Polymers (Basel) 13.20 (Oct. 2021). DOI: 10.3390/polym13203557.

X. Li et al. “Resin composites reinforced by nanoscaled fibers or tubes for dental regeneration”. In: Hindawi Publishing Corporation (2014). DOI: 10.1155/2014/542958.

A. B. Meireles et al. “Trends in polymeric electrospun fibers and their use as oral biomaterials”. In: SAGE Publications Inc. (May 2018). doi: 10.1177/1535370218770404.

L. Cheng et al. “NaF-loaded core-shell PAN-PMMA nanofibers as reinforcements for Bis-GMA/TEGDMA restorative resins”. In: Materials Science and Engineering C 34.1 (Jan. 2014), pp. 262–269. DOI: 10.1016/j.msec.2013.09.020.

A. S. Khan et al. “Fabrication and in vivo evaluation of hydroxyapatite/carbon nanotube electrospun fibers for biomedical/dental application”. In: Materials Science and Engineering C 80 (Nov. 2017), pp. 387–396. DOI: 10.1016/j.msec.2017.05.109.

W. Jia et al. “Polyether-ether-ketone/poly(methyl methacrylate)/carbon fiber ternary composites prepared by electrospinning and hot pressing for bone implant applications”. In: Mater Des 209 (Nov. 2021). DOI: 10.1016/j.matdes.2021.109893.

A. S. Kranthi Kiran et al. “Drug loaded electrospun polymer/ceramic composite nanofibrous coatings on titanium for implant related infections”. In: Ceram Int 45.15 (Oct. 2019), pp. 18710–18720. DOI: 10.1016/j.ceramint.2019.06.097.

S. Promnil et al. “Effect of molecular weight on mechanical properties of electrospun poly (lactic acid) fibers for meniscus tissue engineering scaffold”. In: Materials Today: Proceedings (2021), pp. 3496–3499. DOI: 10.1016/j.matpr.2021.03.504.

M. Zafar et al. “Potential of electrospun nanofibers for biomedical and dental applications”. In: Materials 9.2 (2016), pp. 1–21. DOI: 10.3390/ma9020073.

Z. Khurshid et al. “Advances in nanotechnology for restorative dentistry”. In: Materials 8.2 (2015), pp. 717–731. DOI: 10.3390/ma8020717.

K. P. Matabola et al. “Studies on single polymer composites of poly(methyl methacrylate) reinforced with electrospun nanofibers with a focus on their dynamic mechanical properties”. In: Express Polym Lett 5.7 (2011), pp. 635–642. DOI: 10.3144/expresspolymlett.2011.61.

A. Al-Khateeb et al. “Metallic Implant Surface Activation through Electrospinning Coating of Nanocomposite Fiber for Bone Regeneration”. In: Int J Biomater 2023 (2023). DOI: 10.1155/2023/1332814.

Z. Li. One-dimensional nanostructures electrospinning technique and unique nanofibers. Available: http://www.springer.com/series/10111. 2013.

S. Jin et al. “A Bibliometric Analysis of Electrospun Nanofibers for Dentistry”. In: MDPI (Sept.2022). DOI: 10.3390/jfb13030090.

Published

2024-12-30

How to Cite

Sudiyasari, N., & Rahman, S. F. (2024). Exploring the Potential of Electrospun Polymers for High-Performance Dental Composite: A Mini Review. International Journal of Electrical, Computer, and Biomedical Engineering, 2(4), 557–566. https://doi.org/10.62146/ijecbe.v2i4.91

Issue

Section

Biomedical Engineering