Optimizing Power Transformer Failure Identification: A Multi-Method Framework Based on Normalized Energy Intensity According to IEEE C57.104-2019 Standards Adapted to Indonesian Power Transformer Characteristics
DOI:
https://doi.org/10.62146/ijecbe.v3i2.121Keywords:
Power Transformer, Dissolved Gas Analysis, Normalized Energy Intensity, IEEE C57.104-2019, Duval Triangle, Duval Pentagon, Percentile Threshold, Fault Identification, Multi-MethodAbstract
This research develops and validates a multi-method diagnostic framework by integrating Normalized Energy Intensity (NEI) parameters according to IEEE C57.104-2019 standards adapted for Indonesian power transformer populations. Analysis of 1525 DGA samples from PLN Indonesia transformers reveals significant differences in percentile thresholds compared to North American standards. Using unadapted North American thresholds categorized 68.4% of transformers as critical (DGA Status 3), while adapted thresholds reduced this to 25.1%. Duval Triangle 1 identified Discharge of Low Energy (D1) as the dominant failure type (35.4%), while Duval Pentagon 1 showed dominance of Discharge of High Energy (D2) (39.4%), and Duval Pentagon 2 identified Stray gassing (S) (27.6%) and Overheating without paper carbonization (O) (22.3%). Pearson correlation analysis on transformers with O₂/N₂ ratio ≤ 0.2 showed strong correlations between NEI Oil with ethylene (R = 0.877) and methane (R = 0.845), while NEI Paper strongly correlated with carbon monoxide (R = 0.934). NEI Oil combined with hydrocarbon gas concentrations provided more consistent patterns with multi-method fault identification than NEI Paper. Multi-method validation proved absolute gas concentration methods more reliable than gas ratio methods. This framework improves maintenance efficiency by reducing false alarms and optimizing preventive strategies.
References
K. Kaur, D. Bhalla, and J. Singh, “Fault Diagnosis for Oil Immersed Transformer Using Certainty Factor,” IEEE Trans. Dielectr. Electr. Insul., vol. 31, no. 1, pp. 485–494, 2024, doi: https://doi.org/10.1109/TDEI.2023.3307513.
Khoirudin et al., “Analysis of Transformer Oil Post-Flashover: DGA Testing and Diagnostic Approached,” J. Tek. Mesin Mech. Xplore, vol. 4, no. 2, pp. 74–85, 2024, doi: https://doi.org/10.36805/jtmmx.v4i2.6093.
D. Paul and A. K. Goswami, “Bivariate Modeling of Normalized Energy Intensity of Oil and Paper for Determining the Health Index of In-Service Transformers and Reactors,” IEEE Trans. Ind. Appl., vol. 60, no. 1, pp. 1553–1563, 2024, doi: https://doi.org/10.1109/TIA.2023.3323414.
A. M. Abd Aziz, A. M. M. Muhayeddin, M. F. I. M. Supian, M. A. Talib, A. F. Abidin, and S. A. M. Al Junid, “Assessment of Transformer Health Index Based on Dissolved Gas Analysis,” 2023 IEEE Int. Conf. Appl. Electron. Eng. ICAEE 2023, pp. 1–5, 2023, doi: https://doi.org/10.1109/ICAEE58583.2023.10331147.
A. M. Aciu and M. C. Nitu, “Complementary Analysis of the Fault Condition of Transformers in Service,” 2023 Int. Conf. Electromechanical Energy Syst. SIELMEN 2023 - Proc., pp. 0–4, 2023, doi: https://doi.org/10.1109/SIELMEN59038.2023.10290832.
M. S. Ali, A. H. Abu Bakar, A. Omar, A. S. Abdul Jaafar, and S. H. Mohamed, “Conventional methods of dissolved gas analysis using oil-immersed power transformer for fault diagnosis: A review,” Electr. Power Syst. Res., vol. 216, no. November 2022, p. 109064, 2023, doi: https://doi.org/10.1016/j.epsr.2022.109064.
M. Duval and J. Buchacz, “Detection of Carbonization of Paper in Transformers Using Duval Pentagon 2 and Triangle 5,” IEEE Trans. Dielectr. Electr. Insul., vol. 30, no. 4, pp. 1534–1539, 2023, doi: https://doi.org/10.1109/TDEI.2023.3278623.
S. Gopakumar and T. Sree Renga Raja, “Determination of Power Transformer Fault’s Severity Based on Fuzzy Logic Model with GR, Level and DGA Interpretation,” J. Electr. Eng. Technol., 2023, doi: https://doi.org/10.1007/S42835-023-01691-W.
A. Hechifa, A. Lakehal, C. Labiod, A. Nanfak, D. E. A. Mansour, and D. Said, “The Effect of Source Data on Graphical Pentagons DGA Methods for Detecting Incipient Faults in Power Transformers,” 2023 Int. Conf. Decis. Aid Sci. Appl. DASA 2023, pp. 152–157, 2023, doi: https://doi.org/10.1109/DASA59624.2023.10286665.
N. Hirkaney and S. Lall, “Comparison of Fault Identification Methods for Analyzing Transformer Dissolved Gas∗,” 2023 3rd Int. Conf. Energy, Power Electr. Eng. EPEE 2023, pp. 902–907, 2023, doi: https://doi.org/10.1109/EPEE59859.2023.10351906.
T. Manoj, C. Ranga, S. S. M. Ghoneim, U. M. Rao, and S. A. M. Abdelwahab, “Alternate and Effective Dissolved Gas Interpretation to Understand the Transformer Incipient Faults,” IEEE Trans. Dielectr. Electr. Insul., vol. 30, no. 3, pp. 1231–1239, 2023, doi: https://doi.org/10.1109/TDEI.2023.3237795.
R. A. Prasojo, L. Safarina, R. Duanaputri, M. F. Hakim, I. Ridzki, and I. Kurniawan, “An Evaluation and Correlation Study of Oil and Solid Insulation in Power Transformers using Composite Index Considering Operating Age,” Int. J. Electr. Eng. Informatics, vol. 15, no. 4, pp. 549–562, 2023, doi: https://doi.org/10.15676/ijeei.2023.15.4.4.
A. Rangel Bessa, J. Farias Fardin, P. Marques Ciarelli, and L. Frizera Encarnação, “Conventional Dissolved Gases Analysis in Power Transformers: Review,” Energies, vol. 16, no. 21, 2023, doi: https://doi.org/10.3390/en16217219.
V. Rokani, S. D. Kaminaris, P. Karaisas, and D. Kaminaris, “Power Transformer Fault Diagnosis Using Neural Network Optimization Techniques,” Mathematics, vol. 11, no. 22, 2023, doi: https://doi.org/10.3390/math11224693.
Y. Siregar and T. J. Hartanto Lumbanraja, “Analysis of interference methods on transformers based on the results of dissolved gas analysis tests,” Int. J. Electr. Comput. Eng., vol. 13, no. 4, pp. 3672–3685, 2023, doi: https://doi.org/10.11591/ijece.v13i4.pp3672-3685.
N. T. Son, P. M. Tu, and H. Anh, “A Comparative Study of Machine Learning Classifiers in Oil-Immersed Power Transformer Fault Diagnosis,” JST Smart Syst. Devices, vol. 33, no. 3, pp. 33–40, 2023, doi: https://doi.org/10.51316/jst.168.ssad.2023.33.3.5.
R. Soni and B. Mehta, “A review on transformer condition monitoring with critical investigation of mineral oil and alternate dielectric fluids,” Electr. Power Syst. Res., vol. 214, no. PB, p. 108954, 2023, doi: https://doi.org/10.1016/j.epsr.2022.108954.
A. Wajid et al., “Comparative Performance Study of Dissolved Gas Analysis (DGA) Methods for Identification of Faults in Power Transformer,” Int. J. Energy Res., vol. 2023, 2023, doi: https://doi.org/10.1155/2023/9960743.
X. Zhou et al., “Research on gas production law of free gas in oil-immersed power transformer under discharge fault of different severity,” Front. Energy Res., vol. 10, no. January, pp. 1–10, 2023, doi: https://doi.org/10.3389/fenrg.2022.1056604.
M. Badawi et al., “Reliable Estimation for Health Index of Transformer Oil Based on Novel Combined Predictive Maintenance Techniques,” IEEE Access, 2022, doi: https://doi.org/10.1109/ACCESS.2022.3156102.
Z. H. Draper, J. J. Dukarm, and C. Beauchemin, “How to Improve IEEE C57.104-2019 DGA Fault Severity Interpretation,” Proc. IEEE Power Eng. Soc. Transm. Distrib. Conf., vol. 2022-April, pp. 1–5, 2022, doi: https://doi.org/10.1109/TD43745.2022.9816859.
M. Duval and J. Buchacz, “Gas Formation from Arcing Faults in Transformers-Part II,” IEEE Electr. Insul. Mag., vol. 38, no. 6, pp. 12–15, 2022, doi: https://doi.org/10.1109/MEI.2022.9916225.
M. Duval and J. Buchacz, “Identification of Arcing Faults in Paper and Oil in Transformers - Part I: Using the Duval Pentagons,” IEEE Electr. Insul. Mag., vol. 38, no. 1, pp. 19–23, 2022, doi: https://doi.org/10.1109/MEI.2022.9648268.
R. Furqaranda, A. Bintoro, A. Asri, W. K. A. Al-Ani, and A. Shrestha, “Analysis Oil Condition of Transformer PT-8801-A by Using the Method TDCG, Rogers Ratio, Key Gas, and Duval Triangle: A Case Study at PT. Perta Arun Gas,” J. Renew. Energy, Electr. Comput. Eng., vol. 2, no. 2, p. 47, 2022, doi: https://doi.org/10.29103/jreece.v2i2.8567.
K. Jongvilaikasem, N. Pattanadech, W. Wattakapaiboon, M. Kando, S. Maneerot, and P. Pannil, “The Comparison of DGA Interpretation Techniques Application for Actual Failure Transformer Inspections Including Experience from Power Plants in Thailand,” Int. J. Electr. Eng. Informatics, vol. 14, no. 1, pp. 224–233, 2022, doi: https://doi.org/10.15676/ijeei.2022.14.1.14.
A. Khanna and P. Bisht, “Rogers ratio test for fault diagnosis of transformer using dissolved gas analysis,” Mater. Today Proc., vol. 71, pp. 243–246, 2022, doi: https://doi.org/10.1016/j.matpr.2022.08.519.
P. K. Maiti, “Assessment of Solid Insulation by Analyzing Oil in Service Transformers and Laboratory Ageing Studies,” Proc. 2022 6th Int. Conf. Cond. Assess. Tech. Electr. Syst. CATCON 2022, pp. 288–292, 2022, doi: https://doi.org/10.1109/CATCON56237.2022.10077656.
D. Paul and A. K. Goswami, “Bivariate Modelling of Normalized Energy Intensity of Oil and Paper for Accessing the Fault Severity of Transformer and Reactors,” in PESGRE 2022 - IEEE International Conference on “Power Electronics, Smart Grid, and Renewable Energy,” IEEE, 2022, pp. 1–6. doi: https://doi.org/10.1109/PESGRE52268.2022.9715875.
R. A. Prasojo, Muhammad Akmal Afibuddin Putra, and Neelmani, “Mixture of Faults Identification on Power Transformers Using Multi-Method Dissolved Gas Analysis,” Int. J. Front. Technol. Eng., vol. 1, no. 01, pp. 1–12, 2022, doi: https://doi.org/10.33795/ijfte.v1i01.221.
E. B. Sibuea and Suwarno, “Correlation of Oil Dielectric Characteristics, Dissolved Gases, and Operating Life to Insulation Paper Degradation of 150 kV Power Transformers,” 2022 Int. Semin. Intell. Technol. Its Appl. Adv. Innov. Electr. Syst. Humanit. ISITIA 2022 - Proceeding, pp. 360–364, 2022, doi: https://doi.org/10.1109/ISITIA56226.2022.9855342.
R. Soni and B. Mehta, “Graphical examination of dissolved gas analysis by ratio methods and Duval triangle method to investigate internal faults of power transformer,” Mater. Today Proc., vol. 62, no. P13, pp. 7098–7103, 2022, doi: https://doi.org/10.1016/j.matpr.2022.02.029.
Y. Yue, D. Yang, and D. Han, “Application of Duval Pentagon in State Diagnosis of on Load Tap Changer,” J. Phys. Conf. Ser., vol. 2247, no. 1, 2022, doi: https://doi.org/10.1088/1742-6596/2247/1/012021.
L. Bouchaoui, K. E. Hemsas, H. Mellah, and S. Benlahneche, “Power transformer faults diagnosis using undestructive methods (Roger and iec) and artificial neural network for dissolved gas analysis applied on the functional transformer in the algerian north-eastern: A comparative study,” Electr. Eng. Electromechanics, no. 4, pp. 3–11, 2021, doi: https://doi.org/10.20998/2074-272X.2021.4.01.
P. Chanchotisatien and S. Phumpho, “Automated dissolved gas analysis report generator for monitoring condition of high-voltage transformers,” Sensors Mater., vol. 33, no. 7, pp. 2415–2426, 2021, doi: https://doi.org/10.18494/SAM.2021.3313.
N. Chattranont and N. Rugthaicharoencheep, “Fault Diagnosis of Oil-Immersed Power Transformer: A Case Study,” 2021 Int. Conf. Power, Energy Innov. ICPEI 2021, no. Icpei, pp. 203–206, 2021, doi: https://doi.org/10.1109/ICPEI52436.2021.9690666.
I. Irwanto, “Failure of 150 KV Power Transformer in Indication of Dissolved Gas Analysis Test in Total Dissolved Combustile Gas (TDCG) Method,” VANOS J. Mech. Eng. Educ., vol. 6, no. 1, pp. 36–47, 2021, doi: https://doi.org/10.30870/vanos.v6i1.10516.
Z. A. Latiff, M. Fairouz, and M. Yousof, “Development of Software for Duval Triangle and Pentagon Interpretation on Transformer Oil Dissolved Gas Analysis,” Evol. Electr. Electron. Eng., vol. 2, no. 2, pp. 467–473, 2021, [Online]. Available: http://publisher.uthm.edu.my/periodicals/index.php/eeee
M. Meira, R. E. Alvarez, C. J. Verucchi, and L. J. Catalano, “Comparison of Methods for the Interpretation of Dissolved Gases in Soybean Based Natural Ester,” in 2021 Electrical Insulation Conference, EIC 2021, 2021. doi: https://doi.org/10.1109/EIC49891.2021.9612367.
R. A. Prasojo, Suwarno, and A. Abu-Siada, “Dealing with Data Uncertainty for Transformer Insulation System Health Index,” IEEE Access, vol. 9, pp. 74703–74712, 2021, doi: https://doi.org/10.1109/ACCESS.2021.3081699.
D. Ravi, “Condition Monitoring of High Voltage Transformer using Dissolved Gas Analysis Methods,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 9, no. VI, pp. 1759–1770, Jun. 2021, doi: https://doi.org/10.22214/ijraset.2021.35374.
H. Sutikno, R. A. Prasojo, and Suwarno, “Integration of Duval Pentagon to the Multi-Method Interpretation to Improve the Accuracy of Dissolved Gas Analysis Technique,” Proc. IEEE Int. Conf. Prop. Appl. Dielectr. Mater., vol. 2021-July, no. Icpadm, pp. 298–301, 2021, doi: https://doi.org/10.1109/ICPADM49635.2021.9493929.
A. Teymouri and B. Vahidi, “Power transformer cellulosic insulation destruction assessment using a calculated index composed of CO, CO2, 2-Furfural, and Acetylene,” Cellulose, vol. 28, no. 1, pp. 489–502, 2021, doi: https://doi.org/10.1007/s10570-020-03548-1.
S. A. Wani, A. S. Rana, S. Sohail, O. Rahman, S. Parveen, and S. A. Khan, “Advances in DGA based condition monitoring of transformers: A review,” Renew. Sustain. Energy Rev., vol. 149, no. June, p. 111347, 2021, doi: https://doi.org/10.1016/j.rser.2021.111347.
N. Chattranont, S. Woothipatanapan, and N. Rugthaicharoencheep, “Case Study on Power Transformer using Dissolved Gas Analysis Technique,” Proc. 2020 Int. Conf. Power, Energy Innov. ICPEI 2020, pp. 165–168, 2020, doi: https://doi.org/10.1109/ICPEI49860.2020.9431480.
L. Cheim, M. Duval, and S. Haider, “Combined duval pentagons: A simplified approach,” Energies, vol. 13, no. 11, 2020, doi: https://doi.org/10.3390/en13112859.
J. Dukarm, Z. Draper, and T. Piotrowski, “Diagnostic simplexes for dissolved-gas analysis,” Energies, vol. 13, no. 23, pp. 1–16, 2020, doi: https://doi.org/10.3390/en13236459.
S. S. M. Ghoneim and I. B. M. Taha, “Comparative study of full and reduced feature scenarios for health index computation of power transformers,” IEEE Access, vol. 8, pp. 181326–181339, 2020, doi: https://doi.org/10.1109/ACCESS.2020.3028689.
M. Hosseini, B. G. Stewart, M. Kearns, and N. Torenvliet, “Construction of a Transformer DGA Health Index Based on DGA Screening Processes,” in Annual Report - Conference on Electrical Insulation and Dielectric Phenomena, CEIDP, 2020. doi: https://doi.org/10.1109/CEIDP49254.2020.9437537.
H. Hu, D. Wang, J. Fu, Y. Mao, Z. Zhang, and D. Wu, “Software implementation of automatic fault identification based on the Duval Pentagon,” J. Phys. Conf. Ser., vol. 1633, no. 1, pp. 0–7, 2020, doi: https://doi.org/10.1088/1742-6596/1633/1/012135.
G. K. Irungu and A. O. Akumu, “Application of dissolved gas analysis in assessing degree of healthiness or faultiness with fault identification in oil-immersed equipment,” Energies, vol. 13, no. 18, pp. 1–24, 2020, doi: https://doi.org/10.3390/en13184770.
T. U. Mawelela, A. F. Nnachi, A. O. Akumu, and B. T. Abe, “Fault Diagnosis of Power Transformers Using Duval Triangle,” 2020 IEEE PES/IAS PowerAfrica, PowerAfrica 2020, vol. ௭, no. 1, pp. 1–5, 2020, doi: https://doi.org/10.1109/PowerAfrica49420.2020.9219802.
T. Piotrowski, P. Rozga, R. Kozak, and Z. Szymanski, “Using the analysis of the gases dissolved in oil in diagnosis of transformer bushings with paper-oil insulation—a case study,” Energies, vol. 13, no. 24, 2020, doi: https://doi.org/10.3390/en13246713.
P. Seminar, N. Nciet, and N. Conference, “ANALISA GEJALA KERUSAKAN TRANSFORMATOR BERDASARKAN DISSOLVED GAS ANALYSIS PEMBANGKIT PLTA WAY BESAI,” Pros. Semin. Nas. NCIET, vol. 1, no. 1, pp. 13–23, Dec. 2020, doi: https://doi.org/10.32497/nciet.v1i1.16.
H. Syafruddin and H. P. Nugroho, “Dissolved Gas Analysis (DGA) for diagnosis of fault in oil-immersed power transformers : AA case study,” 2020 4th Int. Conf. Electr. Telecommun. Comput. Eng. ELTICOM 2020 - Proc., pp. 57–62, 2020, doi: https://doi.org/10.1109/ELTICOM50775.2020.9230491.
P. Cole et al., Condition Assessment of Power Transformers, no. March. CIGRE, 2019.
M. Duval et al., Cigre D1/A2 Technical Brochure. Advances in DGA interpretation - CIGRE 771, no. October. 2019.
M. Duval et al., “Cigre D1/A2 Technical Brochure. DGA Monitoring Systems,” CIGRE Tech. Broch., no. October, 2019.
J. Jalbert et al., Cigre Brochure 779: Field experience with transformer solid insulation ageing markers, no. October. 2019. [Online]. Available: http://gwrsystem.com/images/stories/AboutGWRS/GWRS Technical Brochure.pdf
N. Mahmoudi, M. H. Samimi, and H. Mohseni, “Experiences with transformer diagnosis by DGA: Case studies,” IET Gener. Transm. Distrib., vol. 13, no. 23, pp. 5431–5439, 2019, doi: https://doi.org/10.1049/iet-gtd.2019.1056.
A. K. Mehrabadi, A. Shemshadi, and H. Shateri, “An Alternative Approach for Oil-immersed High Voltage Power Transformer Dissolved Gas Analysis Diagnostic Techniques,” Elektr. J. Electr. Eng., vol. 18, no. 2, pp. 1–7, 2019, doi: https://doi.org/10.11113/elektrika.v18n2.123.
E. T. Mharakurwa, G. N. Nyakoe, and A. O. Akumu, “Power Transformer Fault Severity Estimation Based on Dissolved Gas Analysis and Energy of Fault Formation Technique,” J. Electr. Comput. Eng., vol. 2019, 2019, doi: https://doi.org/10.1155/2019/9674054.
N. Pattanadech and W. Wattakapaiboon, “Application of duval pentagon compared with other DGA interpretation techniques: Case studies for actual transformer inspections including experience from power plants in Thailand,” Proceeding - 5th Int. Conf. Eng. Appl. Sci. Technol. ICEAST 2019, pp. 1–4, 2019, doi: https://doi.org/10.1109/ICEAST.2019.8802523.
R. A. Prasojo, N. U. Maulidevi, B. A. Soedjarno, and S. Suwarno, “Health Index Analysis of Power Transformer with Incomplete Paper Condition Data,” 4th Int. Conf. Cond. Assess. Tech. Electr. Syst. CATCON 2019, pp. 3–6, 2019, doi: https://doi.org/10.1109/CATCON47128.2019.CN0073.
O. Shutenko, “Analysis of gas composition in oil-filled faulty equipment with acetylene as the key gas,” Energetika, vol. 65, no. 1, pp. 21–38, 2019, doi: https://doi.org/10.6001/energetika.v65i1.3973.
S. Surawijaya, R. A. Prasojo, W. Riga Tamma, I. G. Ngurah Mahendrayana, and Suwarno, “Diagnosis of Power Transformer Condition using Dissolved Gas Analysis Technique: Case Studies at Geothermal Power Plants in Indonesia,” Proc. 2nd Int. Conf. High Volt. Eng. Power Syst. Towar. Sustain. Reliab. Power Deliv. ICHVEPS 2019, pp. 1–6, 2019, doi: https://doi.org/10.1109/ICHVEPS47643.2019.9011106.
Transformers Committee of the IEEE Power and Energy Society, IEEE Guide for the Interpretation of Gases Generated in Mineral Oil-Immersed Transformers.Std C57.104TM-2019 (Revision of IEEE Std C57.104-2008), vol. 2019. New York: IEEE Power and Energy Society, 2019.
S. A. Wani, D. Gupta, M. U. Farooque, and S. A. Khan, “Multiple incipient fault classification approach for enhancing the accuracy of dissolved gas analysis (DGA),” IET Sci. Meas. Technol., vol. 13, no. 7, pp. 959–967, 2019, doi: https://doi.org/10.1049/iet-smt.2018.5135.
J. Faiz and M. Soleimani, “Assessment of computational intelligence and conventional dissolved gas analysis methods for transformer fault diagnosis,” IEEE Trans. Dielectr. Electr. Insul., vol. 25, no. 5, pp. 1798–1806, 2018, doi: https://doi.org/10.1109/TDEI.2018.007191.
O. E. Gouda, S. H. El-Hoshy, and H. H. El-Tamaly, “Proposed heptagon graph for DGA interpretation of oil transformers,” IET Gener. Transm. Distrib., vol. 12, no. 2, pp. 490–498, 2018, doi: https://doi.org/10.1049/iet-gtd.2017.0826.
O. E. Gouda, S. H. El-Hoshy, and H. H. El-Tamaly, “Proposed three ratios technique for the interpretation of mineral oil transformers based dissolved gas analysis,” IET Gener. Transm. Distrib., vol. 12, no. 11, pp. 2650–2661, 2018, doi: https://doi.org/10.1049/iet-gtd.2017.1927.
D. Kweon and Y. Kim, “Interpretation of turn-to-turn insulation fault by dissolved gas analysis,” IEEE Trans. Dielectr. Electr. Insul., vol. 25, no. 4, pp. 1560–1566, 2018, doi: https://doi.org/10.1109/TDEI.2018.007477.
S. Permana, S. Sumarto, and W. S. Saputra, “Analysis of Transformer Conditions using Triangle Duval Method,” IOP Conf. Ser. Mater. Sci. Eng., vol. 384, no. 1, 2018, doi: https://doi.org/10.1088/1757-899X/384/1/012065.
R. Cox, “Categorizing transformer faults via Dissolved Gas Analysis,” 2017 IEEE 19th Int. Conf. Dielectr. Liq. ICDL 2017, vol. 2017-Janua, no. Icdl, pp. 1–3, 2017, doi: https://doi.org/10.1109/ICDL.2017.8124733.
M. Duval and L. Lamarre, “The new Duval Pentagons available for DGA diagnosis in transformers filled with mineral and ester oils,” 2017 IEEE Electr. Insul. Conf. EIC 2017, no. June, pp. 279–281, 2017, doi: https://doi.org/10.1109/EIC.2017.8004683.
J. Faiz and M. Soleimani, “Dissolved gas analysis evaluation in electric power transformers using conventional methods a review,” IEEE Trans. Dielectr. Electr. Insul., vol. 24, no. 2, pp. 1239–1248, 2017, doi: https://doi.org/10.1109/TDEI.2017.005959.
IEEE Std C57.140, IEEE Guide for the Evaluation and Reconditioning of Liquid Immersed Power Transformers.IEEE Std C57.140TM-2017 (Revision of IEEE Std C57.140-2006), vol. 2017, no. April. 2017.
T. Mendes Barbosa, J. Goncalves Ferreira, M. Antonio Ferreira Finocchio, and W. Endo, “Development of an Application Based on the Duval Triangle Method,” IEEE Lat. Am. Trans., vol. 15, no. 8, pp. 1439–1446, 2017, doi: https://doi.org/10.1109/TLA.2017.7994790.
T. B. Shanker, H. N. Nagamani, D. Antony, and G. S. Punekar, “Case studies on transformer fault diagnosis using dissolved gas analysis,” Asia-Pacific Power Energy Eng. Conf. APPEEC, vol. 2017-Novem, pp. 1–3, 2017, doi: https://doi.org/10.1109/APPEEC.2017.8309010.
I. B. M. Taha, D. E. A. Mansour, S. S. M. Ghoneim, and N. I. Elkalashy, “Conditional probability-based interpretation of dissolved gas analysis for transformer incipient faults,” IET Gener. Transm. Distrib., vol. 11, no. 4, pp. 943–951, Mar. 2017, doi: https://doi.org/10.1049/iet-gtd.2016.0886.
S. A. Wani, S. A. Khan, Y. Vikram, C. Bhasker, S. Perneen, and D. Gupta, “An improved dissolved gas analysis technique for incipient fault detection,” in 2017 3rd International Conference on Condition Assessment Techniques in Electrical Systems, CATCON 2017 - Proceedings, IEEE, Nov. 2017, pp. 88–92. doi: https://doi.org/10.1109/CATCON.2017.8280190.
S. S. M. Ghoneim and I. B. M. Taha, “A new approach of DGA interpretation technique for transformer fault diagnosis,” Int. J. Electr. Power Energy Syst., vol. 81, pp. 265–274, 2016, doi: https://doi.org/10.1016/j.ijepes.2016.02.018.
G. K. Irungu, A. O. Akumu, and J. L. Munda, “A new fault diagnostic technique in oil-filled electrical equipment; the dual of Duval triangle,” IEEE Trans. Dielectr. Electr. Insul., vol. 23, no. 6, pp. 3405–3410, 2016, doi: https://doi.org/10.1109/TDEI.2016.005927.
G. K. Irungu, A. O. Akumu, and J. L. Munda, “Comparison of IEC 60599 gas ratios and an integrated fuzzy-evidential reasoning approach in fault identification using dissolved gas analysis,” Proc. - 2016 51st Int. Univ. Power Eng. Conf. UPEC 2016, vol. 2017-Janua, pp. 1–6, 2016, doi: https://doi.org/10.1109/UPEC.2016.8114055.
G. K. Irungu, A. O. Akumu, and J. L. Munda, “Fault diagnostics in oil filled electrical equipment: Review of duval triangle and possibility of alternatives,” 34th Electr. Insul. Conf. EIC 2016, no. June, pp. 174–177, 2016, doi: https://doi.org/10.1109/EIC.2016.7548688.
J. Sylvestre N’cho, I. Fofana, Y. Hadjadj, and A. Beroual, “Review of physicochemical-based diagnostic techniques for assessing insulation condition in aged transformers,” Energies, vol. 9, no. 5, pp. 903–917, 2016, doi: https://doi.org/10.3390/en9050367.
I. B. M. Taha, S. S. M. Ghoneim, and A. S. A. Duaywah, “Refining DGA methods of IEC Code and Rogers four ratios for transformer fault diagnosis,” IEEE Power Energy Soc. Gen. Meet., vol. 2016-Novem, pp. 1–5, 2016, doi: https://doi.org/10.1109/PESGM.2016.7741157.
Transformers Commite, “IEEE Guide for the Use of Dissolved Gas Analysis Applied to Factory Temperature Rise Tests for the Evaluation of Mineral Oil-Immersed Transformers and Reactors,” IEEE Std C57.130-2015, pp. 1–17, 2016, [Online]. Available: https://ieeexplore.ieee.org/document/7414364
S. A. Wani, M. U. Farooque, S. A. Khan, D. Gupta, and M. A. Khan, “Fault severity determination in transformers using dissolved gas analysis(DGA),” 12th IEEE Int. Conf. Electron. Energy, Environ. Commun. Comput. Control (E3-C3), INDICON 2015, pp. 1–6, 2016, doi: https://doi.org/10.1109/INDICON.2015.7443362.
E. Wannapring, C. Suwanasri, and T. Suwanasri, “Dissolved Gas Analysis methods for distribution transformers,” 2016 13th Int. Conf. Electr. Eng. Comput. Telecommun. Inf. Technol. ECTI-CON 2016, pp. 1–6, 2016, doi: https://doi.org/10.1109/ECTICon.2016.7561320.
A. Abu-Siada and S. Hmood, “A new fuzzy logic approach to identify power transformer criticality using dissolved gas-in-oil analysis,” Int. J. Electr. Power Energy Syst., vol. 67, pp. 401–408, 2015, doi: https://doi.org/10.1016/j.ijepes.2014.12.017.
S. Al-Janabi, S. Rawat, A. Patel, and I. Al-Shourbaji, “Design and evaluation of a hybrid system for detection and prediction of faults in electrical transformers,” Int. J. Electr. Power Energy Syst., vol. 67, pp. 324–335, 2015, doi: https://doi.org/10.1016/j.ijepes.2014.12.005.
F. Jakob and J. J. Dukarm, “Thermodynamic Estimation of Transformer Fault Severity,” IEEE Trans. Power Deliv., vol. 30, no. 4, pp. 1941–1948, 2015, doi: https://doi.org/10.1109/TPWRD.2015.2415767.
L. Londo, R. Bualoti, M. Çelo, and N. Hobdari, “Hybrid Dissolved Gas-in-Oil Analysis Methods,” J. Power Energy Eng., vol. 03, no. 06, pp. 10–19, 2015, doi: https://doi.org/10.4236/jpee.2015.36002.
H. Ma, T. K. Saha, C. Ekanayake, and D. Martin, “Smart transformer for smart grid - Intelligent framework and techniques for power transformer asset management,” IEEE Trans. Smart Grid, vol. 6, no. 2, pp. 1026–1034, 2015, doi: https://doi.org/10.1109/TSG.2014.2384501.
R. Soriano Teles and Wiwik Handajadi, “Pemilihan transformator daya 60 MVA di Gardu Induk 150 KV dan analisis minyak transformator dengan menggunakan Dissolved gas analysis,” J. Elektr., vol. 2, no. 1, pp. 95–108, 2015.
I. B. M. Taha, S. S. M. Ghoneim, and H. G. Zaini, “Improvement of Rogers four ratios and IEC Code methods for transformer fault diagnosis based on Dissolved Gas Analysis,” 2015 North Am. Power Symp. NAPS 2015, pp. 1–5, 2015, doi: https://doi.org/10.1109/NAPS.2015.7335098.
N. Bakar, A. Abu-Siada, and S. Islam, “A review of dissolved gas analysis measurement and interpretation techniques,” IEEE Electr. Insul. Mag., vol. 30, no. 3, pp. 39–49, 2014, doi: https://doi.org/10.1109/MEI.2014.6804740.
A. R. Demmassabu, L. S. Patras, and F. Lisi, “Analisa Kegagalan Transformator Daya Berdasarkan Hasil Uji Dga Dengan Metode Tdcg, Key Gas, Roger’S Ratio, Duval’S Triangle Pada Gardu Induk,” e-Jurnal Tek. Elektro dan Komput., pp. 1–10, 2014.
M. Duval and L. Lamarre, “The duval pentagon-a new complementary tool for the interpretation of dissolved gas analysis in transformers,” IEEE Electr. Insul. Mag., vol. 30, no. 6, pp. 9–12, 2014, doi: https://doi.org/10.1109/MEI.2014.6943428.
A. Chatterjee, P. Bhattacharjee, N. K. Roy, and P. Kumbhakar, “Usage of nanotechnology based gas sensor for health assessment and maintenance of transformers by DGA method,” Int. J. Electr. Power Energy Syst., vol. 45, no. 1, pp. 137–141, 2013, doi: https://doi.org/10.1016/j.ijepes.2012.08.044.
D. Skelly, “The Transition to Next-Generation Online DGA Monitoring Technologies Utilizing Photo-Acoustic Spectroscopy,” 2013.
I. P. and E. Society, IEEE Guide for Diagnostic Field Testing of Fluid-Filled Power Transformers , Regulators , and Reactors. IEEE Std C57.152-2013, vol. 2013. 2013.
A. Abu-Siada and S. Islam, “A new approach to identify power transformer criticality and asset management decision based on dissolved gas-in-oil analysis,” IEEE Trans. Dielectr. Electr. Insul., vol. 19, no. 3, pp. 1007–1012, 2012, doi: https://doi.org/10.1109/TDEI.2012.6215106.
M. Duval, “New frontiers of DGA interpretation for power transformers and their accessories Risk of Failure of Transformers,” Seei, pp. 1–8, 2012, [Online]. Available: http://www.seeei.org.il/prdFiles/2922_desc2.pdf
IEEE, IEEE Guide for Loading Mineral-Oil-Immersed Transformers and Step-Voltage Regulators - Redline, vol. 2011, no. March. 2012.
H. C. Sun, Y. C. Huang, and C. M. Huang, “A review of dissolved gas analysis in power transformers,” Energy Procedia, vol. 14, no. 2011, pp. 1220–1225, 2012, doi: https://doi.org/10.1016/j.egypro.2011.12.1079.
N. Lammers, K. Kissock, B. Abels, and F. Sever, “Measuring Progress with Normalized Energy Intensity,” SAE Int. J. Mater. Manuf., 2011, doi: https://doi.org/10.4271/2011-01-0320.
C. Rajotte et al., “Cigré Brochure 445 - Guide for Transformer Maintenance,” CIGRE Tech. Broch., no. February, p. 23, 2011.
C. H. Lin, C. H. Wu, and P. Z. Huang, “Grey clustering analysis for incipient fault diagnosis in oil-immersed transformers,” Expert Syst. Appl., vol. 36, no. 2 PART 1, pp. 1371–1379, 2009, doi: https://doi.org/10.1016/j.eswa.2007.11.019.
A. Akbari, A. Setayeshmehr, H. Borsi, and E. Gockenbach, “A software implementation of the Duval triangle method,” Conf. Rec. IEEE Int. Symp. Electr. Insul., pp. 124–127, 2008, doi: https://doi.org/10.1109/ELINSL.2008.4570294.
M. Duval, “Calculation of DGA limit values and sampling intervals in transformers in service,” IEEE Electr. Insul. Mag., 2008, doi: https://doi.org/10.1109/MEI.2008.4635656.
M. Duval, “The duval triangle for load tap changers, non-mineral oils and low temperature faults in transformers,” IEEE Electr. Insul. Mag., vol. 24, no. 6, pp. 22–29, 2008, doi: https://doi.org/10.1109/MEI.2008.4665347.
H. Hu, S. Qian, and J. Cao, “Monitoring and fault diagnosing system design for power transformer based on temperature field model and DGA feature extraction,” Proc. World Congr. Intell. Control Autom., pp. 1800–1805, 2008, doi: https://doi.org/10.1109/WCICA.2008.4593195.
IEEE, IEEE Guide for the Evaluation and Reconditioning of Liquid Immersed Power Transformers. IEEE Std C57.140TM-2006, vol. 2017, no. April. 2007.
L. E. Lundgaard et al., CIGRE 323 Ageing of Celluose in Mineral-Oil Insulated Transformers.Task Force.D1.01.10, no. October. CIGRE, 2007.
A. Mercier et al., Guidelines and best practices for the commissioning and operation of controlled switching projects, Transmissi., no. February. CIGRE, 2005.
IEEE Std C57.106TM-2002, IEEE Guide for Acceptance and Maintenance of Insulating Oil in Equipment, vol. 2002, no. April. 2003.
CIGRE Working Group 12.18, “Guidelines for Life Management Techniques for Power Transformers,” Life Manag. Transform., no. June, 2002.
P. T. Health, “Duval ’ s Triangle 1 Method : Fault Diagnosis and Gas Analysis in Power Transformers Introduction How to Plot Duval ’ s Triangle,” Power Transform. Heal., [Online]. Available
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 International Journal of Electrical, Computer, and Biomedical Engineering

This work is licensed under a Creative Commons Attribution 4.0 International License.