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Abstract

Accurate State of Charge (SOC) estimation is crucial for optimizing battery performance
and ensuring the reliability of energy storage systems. As the demand for sustainable and
efficient energy solutions grows, improving SOC estimation methods directly benefits
society by enhancing battery longevity, safety, and efficiency in clean energy technologies.
This study investigates the State of Charge (SOC) estimation of a battery using secondary
data from the Samsung INR 18650-20R (2000mAh). The methods employed include the
OCV-SOC, Coulomb Counting, and the 1RC equivalent battery model at temperatures
of 0 °C, 25 °C, and 45 °C. This research evaluates the accuracy of these methods while
assessing the influence of temperature on SOC estimation performance, which is critical
for battery management systems in various applications. The equivalent battery model
was tested using a 1A current with 10% SOC intervals, while the SOC estimation was
performed under a 0.1A current during discharge conditions. The results indicate that
the 1RC model demonstrates the smallest error at 25 °C and 45 °C, establishing itself as
the most consistent method for SOC estimation across these temperatures. The Coulomb
Counting method exhibits superior performance, with an R2 value nearing 1 across all
tested temperatures, showcasing its reliability in accurately reflecting SOC. Conversely,
the OCV-SOC method delivers an R? range of 0.9757-0.9864, with its best accuracy
observed at 45 °C but significantly lower accuracy at 25 °C, especially at low SOC
levels (0-10%). The Coulomb Counting method’s high accuracy is influenced by its
reliance on ideal simulation data, which excludes real-world challenges such as current
leakage and sensor fluctuations. Nonetheless, the combination of the 1RC model and
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the Coulomb Counting method proves more reliable for SOC estimation under diverse
temperature conditions compared to the OCV-SOC method. The key contributions
of this work include a systematic evaluation of SOC estimation methods under realistic
temperature variations and insights into the limitations of each approach, which can guide
the development of more robust battery management systems in real-world applications.

Keywords: Estimation accuracy, Lithium-ion battery, OCV-SOC, Coulomb Counting, Algorithm com-
plexity, State of Charge (SOC)

1. Introduction

In today’s technological era, lithium-ion batteries have become a crucial energy
source for various electronic devices, ranging from smartphones and laptops to electric
vehicles. The advantages of lithium-ion batteries, including high energy density,
long lifecycle, and lightweight properties, make them the preferred choice over other
battery technologies [1]. However, with the increasing number of applications relying
on lithium-ion batteries, it is essential to ensure their performance and reliability
remain optimal throughout their lifecycle [2].

One critical aspect of battery management is the ability to accurately monitor
and estimate the State of Charge (SOC). SOC is a measure of the remaining bat-
tery capacity compared to its full capacity and is vital for applications where energy
availability and battery durability predictability are key factors [3]. Inaccuracies in
SOC estimation can lead to serious issues such as sudden power outages, damage to
electronic components, and, in the context of electric vehicles, may cause inconve-
nience or even danger to the driver [4]. Several studies have estimated the state of
charge using methods such as Coulomb Counting, Modified Coulomb Counting,
OCV-SOC, Kalman Filter, and many others [5][6][7].

Two widely used methods for SOC estimation are the Coulomb Counting method
and the Open Circuit Voltage-State of Charge (OCV-SOC) method due to their ease
of implementation. The Coulomb Counting method is based on the fundamental
principle of calculating the total charge that has entered or exited the battery. This
method is simple and straightforward, but its accuracy heavily depends on initial
calibration and the precision of current measurements. The Open Circuit Voltage-
State of Charge (OCV-SOC) method is based on the principle of a direct relationship
between the open circuit voltage and the battery’s State of Charge (SOC). This
relationship is unique and non-linear, depending on the type and characteristics of
the battery. This method is relatively simple and accurate when the battery is in a
steady-state condition.

In this research, secondary data is utilized from the A. James Clark School of
Engineering, Center for Advanced Life Cycle Engineering, for the INR 18650-20R
battery with a capacity of 2 Ah [8]. The battery is fully charged (SoC = 100%) and
tested using two methods. The first method is the HPPC test, which employsa 1 A
load current with intervals of 10% state of charge to estimate the battery equivalent
circuit model. The second method uses a 0.1 A load current to estimate the state of
charge through the OCV-SOC and Coulomb Counting methods. After obtaining



IJECBE 71

the data, the experiment will consist of three main steps. The first step is estimating
parameters for the lithium-ion battery, the second step is estimating the battery’s
state of charge using the OCV-SOC method, and the final step is estimating the
battery’s state of charge using the Coulomb Counting method. All these steps will be
conducted using MATLAB Simulink to simulate the tests.

The main contributions of this study are twofold: (1) a comparative analysis of SOC
estimation methods—OCV-SOC, Coulomb Counting, and equivalent circuit models
(IRC, 2RC, and 3RC)—under varied temperature conditions, and (2) practical insights
into the strengths and limitations of each method and model, aimed at enhancing the
accuracy and robustness of SOC estimation in battery management systems. These
findings are expected to contribute to safer and more reliable battery applications
in electric vehicles and renewable energy systems, both of which are essential for
sustainable development.

1.1 Comparison Analysis of The Accuracy of Lithium-lon Battery State of Charge
Using Coulomb Counting and OCV-SOC Method with 1RC Equivalent Circuit Model
1.2 Equivalent Circuit Model

Battery models are essential for predicting battery performance through simulation
processes, optimizing the structural arrangement of battery packs, and supporting the
design of battery management systems [4]. This model streamlines the intricate elec-
trochemical processes within batteries by representing them using electrical elements
like resistors, capacitors, and voltage sources. The main benefit of employing ECMs
lies in their capability to offer insights into battery behavior without requiring a de-
tailed exploration of the complex internal reactions, which are often computationally
demanding and intricate [9][10][11].

A typical structure of an equivalent circuit model is shown in Figure 1. This
circuit contains a voltage source Em, a series resistance Ry to represent instantaneous
response when the battery is connected to the load, plus one or more parallel R-C
branches connected in series to represent transient an dynamic response of the battery
[12]. These models are commonly applied in battery management systems as they
offer a good balance between simplicity and accuracy, making them suitable for
estimating the state of charge (SOC) and predicting battery performance effectively
[13].

R1
RO

Figure 1. Schematic representation of 1RC Equivalent Circuit Model.



72 Sultan Raihan ef al.

Recent advancements have also led to the development of more sophisticated
ECMs that incorporate additional parameters to enhance their accuracy. For example,
models that include multiple RC pairs can better capture the dynamic behavior of
batteries across varying states of charge and discharge [14]. As shown in Figure
2, which illustrates the equivalent circuit model of a battery with two parallel RC
branches.

R1 R2
RO

c1 c2 +

= (O

Figure 2. Schematic representation of 2RC Equivalent Circuit Model.

In addition, several studies have also examined the use of an equivalent circuit model
of a battery with three parallel RC branches, as shown in Figure 3. Recent studies
have demonstrated the efficacy of the 3RC model in various applications. For instance,
it has been shown to provide accurate estimations of battery performance during
different operational scenarios, including temperature variations and aging effects. The
implementation of the 3RC model in battery management systems facilitates improved
monitoring and control of battery performance [15]. By accurately estimating SOC
and SOH, the model ultimately enhancing the overall efficiency and safety of battery-
operated systems [16].
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Figure 3. Schematic representation of 3RC Equivalent Circuit Model.

Battery simulation requires an approach to model battery operation using electrical
circuit analogies to define behavioral approximations of how battery voltage responds
to different current input stimuli [17]. By leveraging knowledge of common electronic
components, a circuit can be defined that closely mirrors the observed behavior of
a battery cell. The equations describing this circuit also effectively represent the
operation of the observed cell.

This model is known as an equivalent circuit model (ECM) of the battery. The
circuit elements in the model are not intended to represent the physical construction
of the cell. Instead, the circuit serves as a description of the cell’s behavior, with various
circuit elements acting as analogs for certain internal processes. Because extensive
knowledge exists about how circuit elements behave, circuit models leverage this
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understanding to provide more accurate predictions of how a cell will respond under
different usage scenarios.

1.3 Initialization of Equivalent Circuit Model Parameters
Before parameter estimation is performed using MATLAB, the main battery parame-
ters RO, R1, and taul are initialized using the following formulas:

AV,
RO = 1
0- % (1
AVso
R1 = 2
2| ©)
c1- 10 (3)
4R1

In this context, A VO represents the voltage difference when the load is removed,
reflecting the instant response of the battery (measured in volts). AV is the voltage
difference observed from the moment the load is removed until the voltage stabilizes
(also measured in volts). Ai denotes the load current (measured in amperes), and Ts
refers to the time required for the battery to reach a stable voltage condition (measured
in seconds). These parameters are essential for accurately initializing the battery’s
equivalent circuit model.

1.4 Coulomb Counting

The Coulomb Counting method is one of the simplest and most widely used techniques
for estimating State of Charge (SOC). This method operates on the principle that
SOC changes are proportional to the amount of electric charge flowing into or out of
a battery. It measures the current entering or leaving the battery and integrates this
current over time to determine the change in battery charge[18]. The fundamental
formula is:

t
SOC(H) = SOC(0) + — / 1(0)de (4)
Cnom 0

Where SOC(t) is the SOC at time t (in hours), SOC(0) is the initial SOC at t=,
Cnom represents the nominal capacity of the battery in Ampere-hours (Ah), I(t) is the
instantaneous current at time t (in Amperes), and t refers to the time of measurement
(in hours).

In discrete implementations, such as in digital systems or microcontrollers, the
formula becomes:

SOC() = SOC(0) + ij /O 10)de G)

Where, A t represents the time interval between two current measurements (in
hours), I(k) is the current measured at the k-th time interval (in Amperes), and N
is the total number of time intervals during the measurement process. This discrete
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approach allows for the calculation of SOC by summing the current values over
successive time intervals while considering the battery’s nominal capacity.

This method requires accurate current sensors and continuous data logging to
ensure all small current changes are recorded. Starting with a known SOC, charge
reduction or addition is calculated to update the SOC over time. One of the sig-
nificant advantages of Coulomb counting is its simplicity and directness. It allows
for continuous monitoring of the SOC without the need for complex algorithms
or extensive computational resources [19]. However, the method is not without its
challenges. The accuracy of Coulomb counting heavily relies on the precision of
current measurements and the knowledge of the initial SOC and battery capacity.
Errors can accumulate over time due to factors such as current sensor inaccuracies,
battery capacity degradation, and variations in coulombic efficiency. Therefore, com-
pensations such as the coulombic efficiency factor, which accounts for charge losses
during charging and discharging, are often necessary [20]. Coulombic efficiency is
typically less than 1 due to energy losses.

1.5 Open Circuit Voltage - State of Charge

State of Charge (SOC) estimation is a critical aspect of battery management, especially
in electric vehicles (EVs) and energy storage systems (ESS). One of the most commonly
used methods for SOC estimation is the Open Circuit Voltage (OCV-SOC) method,
which relies on the empirical relationship between the open circuit voltage (OCV)
and the SOC of the battery[18]. The relationship between SOC and OCV is well-
established, where OCV serves as a reliable indicator of SOC when the battery is at
rest and in equilibrium [21][22][23].This relationship is typically expressed as:

OCV = f(SOC) (6)

where OCV is the open circuit voltage (V), SOC is the battery’s state of charge (%),
and f represents the empirical or theoretical function linking SOC and OCV. In
equivalent circuit models, OCV can also be determined by accounting for internal
battery parameters, such as internal resistance, using the formula:

OCV = Vierm + IxRint (7)

where Vterm is the terminal voltage (V), I is the battery current (A), and Rint is the
internal resistance (Ohm).

The OCV-SOC method is advantageous for its simplicity and high accuracy
under stable conditions. The SOC estimation procedure begins with ensuring the
battery is in a resting state to eliminate transient currents and polarization effects that
could interfere with voltage measurements. The OCV is measured after the system
reaches thermal and electrochemical equilibrium, which may require a resting period
of several minutes to hours, depending on the battery’s characteristics.

Subsequently, the measured OCV value is converted into SOC using an OCV-
SOC curve derived from laboratory testing or manufacturer data. This curve rep-
resents the non-linear relationship between battery voltage and remaining capacity,
influenced by factors such as battery chemistry (e.g., Lithium-ion, Lead-acid), am-
bient temperature, and discharge rate. The OCV-SOC curve is typically developed
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through controlled charge-discharge cycles, mapping voltage data at various SOC
levels.

In practical applications, voltage sensors measure the OCV at specific times, and
the measured value is compared to the reference OCV-SOC curve to estimate the
SOC. To enhance accuracy, temperature compensation is often applied, as changes
in temperature significantly affect the OCV-SOC relationship. This ensures the
method’s reliability across varying environmental and operating conditions.

It is important to note that the OCV-SOC method has limitations, particularly
its dependence on stable conditions and the requirement for sufficient resting time
to achieve equilibrium. This makes the method less effective for systems that require
quick responses for real-time SOC estimation. As a result, the OCV-SOC method is
often combined with other approaches, such as Coulomb Counting or model-based
techniques, to enhance the reliability and accuracy of SOC estimation.

2. Research Methods

Freparing Data (Cleaning
and Processing Data)

INF: 18650-20R
Battery
Simulation Data

Maodeling the State of
— - Charge (SOC) Estimation

Simulation Circuit

' -

Initialization of Parameters
RO, R1, Taul Using
Equations 3.1, 3.2, 3.3

!

Input Battery Data znd
Parameter Initizlization
Data Using MATLAB Script

‘

—

Battery Parameter
Estimation (Em, R1-R3,

Taul-Tau3) Per Battery
State of Charge [30C)

Are the Simulation
Data and Experimental

Comparing Farameter
Estimation Results to
Determine the Equivalent
Battery Model

|

Obtaining the Bast
Equivalent Model?

—

Figure 4. Research Flowchart

State of Charge [SOC)
Estimation at 0°C, 25°C, and
45°C Using the OCV-50C
Method

|

State of Charge [SOC)
Estimation at 0°C, 25°C, and
45°C Using the Coulomb
‘Counting Method

Analyzing the Estimation
Error Agzinst Experimental
Data

|

Comparing the Analysis
Results of Each Methad with
Experimental Data

|

Conclusion




76 Sultan Raihan ef al.

Figure 4 outlines the research workflow. The first step involves collecting battery
test data, including parameters such as time, voltage, and current. This data is obtained
from verified secondary sources on the internet. The collected data is then cleaned
using Microsoft Excel by removing NaN values and duplicate entries before being
imported into MATLAB for further analysis. After data cleaning, initial parameters
such as RO, R1, and taul-tau3 are initialized using formulas (1), (2), and (3). These
parameters represent the basic characteristics of the battery and serve as the starting
point for modeling and simulation.

Once the initial parameters are set, the battery data and parameters are input into
a MATLAB script for further processing. In MATLAB, advanced battery parameter
estimation is performed to derive values such as Em (the equivalent battery voltage),
R1-R3 (resistances in different battery layers), and taul-tau3 (time constants for each
battery component) based on the battery’s State of Charge (SOC). These results are
compared with experimental data to check for convergence between simulation and
experimental results. Convergence is a critical indicator of the model’s accuracy and
relevance to the actual battery conditions.

If the results show that the simulation and experimental data are not yet convergent,
the process loops back to previous stages, such as additional data cleaning, parameter
adjustments, or MATLAB script optimization. Once convergence is achieved, the
study progresses to the next phase is estimating SOC under three different temperature
conditions: 0 °C, 25 °C, and 45 °C. This estimation employs the OCV-SOC (Open
Circuit Voltage-State of Charge) method with three equivalent battery models: 1RC,
2RC, and 3RC. Each model uses distinct mathematical representations to capture
the dynamic behavior of the battery, enabling a deeper analysis of the impact of
temperature on battery performance.

After SOC estimation, the next step involves analyzing estimation errors by com-
paring simulation results with experimental data. This analysis evaluates the accuracy
of each model in predicting SOC across various temperature conditions. Subsequently,
the results from the three equivalent battery models 1RC, 2RC, and 3RC are com-
pared to identify which model is the most accurate and consistent under different
operational conditions. This comparison considers metrics such as Root Mean Square
Error (RMSE) and Mean Absolute Error (MAE).

The final phase of the research is to draw conclusions based on the analysis results.
These conclusions include recommendations on the most suitable equivalent model
for specific applications and suggestions for future research to refine the methods used.

This research flow provides a systematic approach to modeling, analyzing, and
optimizing battery SOC estimation under various temperature conditions using the
OCV-SOC method equivalent circuit models.

3. Analysis of State of Charge Estimation Using OCV-SOC and Coulomb Counting
3.1 Parameter Estimation for Equivalent Circuit Models

The results of the parameter estimation for the equivalent battery models show im-
provements with each model. However, having more parallel RC circuits does not
necessarily result in a better battery model, as the characteristics of the battery and the
data used vary. The following analysis will present the parameter estimation results for
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the 1RC, 2RC, and 3RC equivalent battery models at battery temperatures of 0 °C,
25 °C, and 45 °C. Figure 5 below shows the visualization of the parameter estimation
results for the 1RC, 2RC, and 3RC equivalent battery models at a battery temperature
of 0 °C, sequentially from top to bottom.
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Figure 5. Comparison of Experimental and Simulation Voltage 1RC, 2RC, and 3RC Equivalent Circuit Model
at That 0 °C

Figure 5 compares the experimental and simulated voltage profiles of 1RC, 2RC,
and 3RC equivalent circuit models at a battery temperature of 0 °C. The top, middle,
and bottom panels depict the 1RC, 2RC, and 3RC model simulations, respectively.
Visual inspection reveals that the 3RC model most closely aligns with experimental
data, particularly during transient phases. Based on these results, an error analysis
was conducted to evaluate the performance of each model using Mean Squared Error
(MSE) and Root Mean Squared Error (RMSE) as presented in the equation (6) and(7).
The result of this equation is presented in Table 1 below.
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Table 1. Calculation Results of MAE and RMSE for Battery Equivalent Model Performance at Tbat =0 °C

0°C
IRC 2RC 3RC
MAE 0.0001 0.0046 0.0039
RMSE 0.0083 0.0682 0.0621

Based on the table 1 results, the 1RC Model demonstrates the lowest error with
an MSE of 0.00001 and an RMSE of 0.0083, indicating the highest accuracy in
representing the battery voltage profile compared to the other models. The 3RC
Model, with an MSE of 0.0039 and an RMSE of 0.0621, performs better than the 2RC
Model but is still less accurate than the 1IRC Model. The 2RC Model, on the other
hand, has the highest error with an MSE of 0.0046 and an RMSE of 0.0682, reflecting
the lowest performance among the three models. Overall, it can be concluded that
the 1RC Model is the most optimal for representing battery voltage dynamics at 0 °C,
followed by the 2RC Model, and lastly the 3RC Model. Increased model complexity
positively contributes to improving estimation accuracy.

Figure 6 below shows the visualization of the parameter estimation results for the
1RC, 2RC, and 3RC equivalent battery models at a battery temperature of 25 °C,
sequentially from top to bottom.

Figure 6 compares the experimental and simulated voltage profiles of 1RC, 2RC,
and 3RC equivalent circuit models at a battery temperature of 25 °C. The top, middle,
and bottom panels depict the 1RC, 2RC, and 3RC model simulations, respectively.
Visual inspection reveals that the 3RC model most closely aligns with experimental
data, particularly during transient phases. Based on these results, an error analysis
was conducted to evaluate the performance of each model using Mean Squared Error
(MSE) and Root Mean Squared Error (RMSE), as presented in Table 2 below.
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Figure 6. Comparison of Experimental and Simulation Voltage 1RC, 2RC, and 3RC Equivalent Circuit Model
at That 25°C

Table 2. Calculation Results of MAE and RMSE for Battery Equivalent Model Performance at Tbat = 25 °C

25°C
1RC 2RC 3RC
MAE 0.00004 0.0048 0.0039
RMSE 0.0069 0.0689 0.0623

Based on the table 2 results, the 1IRC Model has the lowest error with an MSE
of 0.0046 and an RMSE of 0.0682, making it the most accurate model among the
three at 25 °C. The 2RC Model has slightly higher error values, with an MSE of
0.0048 and an RMSE of 0.0689, indicating some deviations, particularly during the
transition phases between battery discharge cycles. The 3RC Model also performs
well, with an MSE of 0.0047 and an RMSE of 0.0689, showing that the addition of
extra resistors and capacitors slightly improves the accuracy in representing the battery
voltage profile at 25 °C. Overall, the 1RC Model is the most optimal for predicting
battery voltage at 25 °C, followed by the 3RC Model and then the 2RC Model.
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Despite the minor differences, the results highlight the trade-offs between sim-
plicity and complexity in model structures.

Figure 7 below shows the visualization of the parameter estimation results for the
1RC, 2RC, and 3RC equivalent battery models at a battery temperature of 45 °C,
sequentially from top to bottom.
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Figure 7. Comparison of Experimental and Simulation Voltage 1RC, 2RC, and 3RC Equivalent Circuit Model
at That45°C

Figure 7 compares the experimental and simulated voltage profiles of 1RC, 2RC,
and 3RC equivalent circuit models at a battery temperature of 45 °C. The top, middle,
and bottom panels depict the 1RC, 2RC, and 3RC model simulations, respectively.
Visual inspection reveals that the 3RC model most closely aligns with experimental
data, particularly during transient phases. Based on these results, an error analysis
was conducted to evaluate the performance of each model using Mean Squared Error
(MSE) and Root Mean Squared Error (RMSE), as presented in Table 3 below.
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Table 3. Calculation Results of MAE and RMSE for Battery Equivalent Model Performance at Tbat =45 °C

45 °C
1RC 2RC 3RC
MAE 0.00002 0.0047 0.0039
RMSE 0.0053 0.0689 0.0624

Based on the table 3 results, the 1IRC Model has an MSE of 0.0039 and an RMSE
of 0.0621, indicating good performance with a low error rate, though some deviations
remain during the transition phases between battery discharge cycles. The 2RC
Model has an MSE of 0.0047 and an RMSE of 0.0689, showing results very close to
the 1RC Model. This suggests that the addition of extra resistors and capacitors does
not significantly enhance the model’s accuracy at this temperature. Similarly, the
3RC Model has an MSE of 0.0039 and an RMSE of 0.0624. While its error values are
slightly higher than those of the 1RC and 2RC Models, the differences are minimal
and statistically insignificant. This indicates that at 45 °C, the added complexity of
the 3RC structure does not provide a meaningful improvement in voltage estimation
accuracy.

Overall, all three models demonstrate nearly identical performance at 45 °C, with
the 1RC Model showing a slight advantage due to its lower RMSE compared to the
other models. This suggests that at higher temperatures, the additional complexity of
models like 2RC and 3RC does not significantly impact accuracy improvement.

3.2 State of Charge Estimation Using Coulomb Counting and OCV-SOC Method at
That=0°C

The graph below illustrates the comparison between the estimated State of Charge
(SOC) of the battery using the Coulomb Counting (CC SOC) method and the

experimental results at a temperature of 0 °C.
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Figure 8. State of Charge Estimation Results Using the Coulomb Counting Method at 0 °C

Figure 8 compares the State of Charge (SoC) estimation results using the Coulomb
Counting method at 0 °C. The two curves, represented by a solid blue line (experi-
mental) and a dashed orange line (simulation), overlap perfectly at 0 °C, indicating
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excellent performance with MSE of 0, RMSE of 0.0001, and R2 of 1. This demon-
strates high accuracy for the Coulomb Counting method under ideal simulation
conditions, though practical applications may be affected by external factors such as
sensor noise and battery self-discharge.

The graph below shows the comparison between the estimated State of Charge
(SOC) of the battery using the Open Circuit Voltage-State of Charge (OCV-SOC)
method and the experimental results at a temperature of 0 °C.

Comparison of Experimental and Simulated SOC at 0°C
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Figure 9. State of Charge Estimation Results Using the OCV-SOC Method at 0 °C

Figure 9 compares the State of Charge (SoC) estimation results using the OCV-
SOC method at 0 °C. The solid blue line (experimental) and dashed orange line
(OCV-SOC simulation) show deviations, especially at lower SOC levels. With an
MSE of 0.002, RMSE of 0.045, and R? of 0.9775, the OCV-SOC method demonstrates
strong correlation but higher errors compared to the Coulomb Counting method,
indicating limitations in accuracy at lower SOC levels.

Table 4. Performance Comparison of Coulomb Counting and OCV-SOC at Tbat =0 °C

Method Parameter 0°C
MSE 0
Coulomb Counting | RMSE 0.0001
R2 1
MSE 0.0016
0OCV-soC RMSE 0.0403
R2 0.9775

Based on the table 4 results, at a temperature of 0 °C, the Coulomb Counting
method outperforms the OCV-SOC method with lower error rates and better pre-
diction accuracy. This indicates that the Coulomb Counting method is more stable
and reliable for use in low-temperature conditions.
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3.3 State of Charge Estimation Using Coulomb Counting and OCV-SOC Method at
That=25°C

The graph below illustrates the comparison between the estimated State of Charge
(SOC) of the battery using the Coulomb Counting (CC SOC) method and the
experimental results at a temperature of 25 °C.
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Figure 10. State of Charge Estimation Results Using the Coulomb Counting Method at 25 °C

Figure 10 compares the State of Charge (SoC) estimation results using the Coulomb
Counting method at 25 °C. The solid blue line represents the experimental results,
while the dashed orange line represents the Coulomb Counting simulation results.
Both curves align perfectly throughout the test period, indicating excellent agreement
between the estimated and actual SOC values.

Evaluation metrics show ideal results, with an MSE of 0, RMSE of 0, and R?
of 1, demonstrating that the Coulomb Counting method achieves perfect accuracy
in estimating battery SOC at 25 °C. These results confirm that there are no signif-
icant deviations between simulation and experimental data under ideal simulation
conditions.

However, it is important to note that these results may be influenced by stable
and controlled simulation conditions, where external factors such as current measure-
ment noise, battery degradation, and undetected small current fluctuations are not
considered. In real-world applications, these factors could affect the accuracy of the
Coulomb Counting method.

Figure 11 compares the State of Charge (SoC) estimation results using the OCV-
SOC method at 25 °C. The solid blue line represents the experimental results, while
the dashed orange line represents the OCV-SOC simulation results. Initially, the two
curves align well, but significant deviations occur over time, especially at medium to
low SOC levels.
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Figure 11. State of Charge Estimation Results Using the OCV-SOC Method at 25 °C

Evaluation metrics show that the OCV-SOC method has an MSE of 0.002, RMSE
of 0.045, and R? of 0.9757. While the R? value indicates a strong correlation between
simulation and experimental results, the higher MSE and RMSE compared to the
Coulomb Counting method reflect greater deviations. These significant deviations at
medium to low SOC levels suggest that the OCV-SOC method struggles to predict
SOC accurately when battery voltage becomes unstable or non-linear.

Table 5. Performance Comparison of Coulomb Counting and OCV-SOC at That = 25 °C

Method Parameter 25°C

Coulomb MSE 0

. RMSE 0
Counting

R2 1

MSE 0.002

QCV-S0C RMSE 0.045

R2 0.9757

Based on the table 5 results, at a temperature of 25 °C, the Coulomb Counting
method remains superior to the OCV-SOC method in terms of lower errors and better
prediction accuracy. This demonstrates that the Coulomb Counting method is more
reliable for use at room temperature, providing consistent and stable performance.

3.4 State of Charge Estimation Using Coulomb Counting and OCV-SOC Method at
Tbat=45 °C
The graph below illustrates the comparison between the estimated State of Charge
(SOC) of the battery using the Coulomb Counting (CC SOC) method and the
experimental results at a temperature of 45 °C.

Figure 12 compares the State of Charge (SoC) estimation results using the Coulomb
Counting method at 45 °C. The solid blue line represents experimental results, while
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Figure 12. State of Charge Estimation Results Using the Coulomb Counting Method at 45 °C

the dashed orange line represents estimates from the Coulomb Counting method.
Both lines align perfectly throughout the test, indicating extremely high accuracy.

Evaluation metrics confirm this, with an MSE of 0, RMSE of 0, and R? of 1,
demonstrating that Coulomb Counting replicates experimental results with perfect
accuracy. At 45 °C, the method proves to be highly stable and effective in estimating
battery SOC. However, it is important to note that this measurement uses experimental
data, which likely contributes to its high accuracy.

: Comparison of Experimental and Simulated SOC at 45°C
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Figure 13. State of Charge Estimation Results Using the OCV-SOC Method at 45 °C

Figure 13 compares the State of Charge (SoC) estimation results using the OCV-
SOC method at 45 °C. The solid blue line represents experimental results, while the
dashed orange line represents OCV-SOC simulation results. Initially, the curves align
well, but noticeable deviations occur over time, especially at medium to low SOC
levels.

Evaluation metrics show an MSE of 0.0011, RMSE of 0.0336, and R? of 0.9864,
indicating a strong correlation between simulation and experimental results. However,
the non-zero MSE and RMSE reflect prediction errors, with more significant devia-
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tions at medium to low SOC levels. This highlights the limitations of the OCV-SOC
method in handling non-linear voltage-SOC relationships, particularly when battery
voltage drops at lower SOC levels.

Table 6. Performance Comparison of Coulomb Counting and OCV-SOC at Tbat =45 °C

Method Parameter | 45°C

Coulomb MSE 0

. RMSE 0
Counting

R2 1

MSE 0.0011

0OCv-50C RMSE 0.0336

R2 0.9864

Based on table 6 results , at a temperature of 45 °C, the Coulomb Counting
method once again outperforms the OCV-SOC method. This confirms that Coulomb
Counting is more stable and accurate in predicting battery conditions across various
temperature ranges, including high temperatures.

3.5 Statistical Validation Using t-test: Paired two sample for means between
Coulomb Counting and OCV-SOC Method

To evaluate the consistency between the State of Charge (SOC) estimation results
obtained

from the Coulomb Counting (CC) method and the Open Circuit Voltage (OCV)
method, a statistical analysis was conducted using the paired t-test in Microsoft Excel.
This test was used to determine whether a statistically significant difference exists
between the SOC values estimated by both methods under various temperature
conditions, namely 0 °C, 25 °C, and 45 °C.

Table 7 below shows the paired t-test output comparing Coulomb Counting and
OCV-SOC method at Thbat = 0 °C. It includes descriptive statistics (mean, variance),
the correlation coefficient, t-statistic, and p-values.

Based on table 7, which presents the t-test results between the Coulomb Counting
and OCV-SOC methods, shows a very high correlation between the SOC estimates
from the Coulomb Counting and Open Circuit Voltage methods (r = 0.9988). How-
ever, the t-test also indicates that the difference in their mean values is statistically
significant (¢ = 408.48, p < 0.05), with the OCV method tending to produce lower
SOC values compared to the Coulomb Counting method.

Table 8 below shows the paired t-test output comparing Coulomb Counting and
OCV-SOC method at Tbat = 25 °C. It includes descriptive statistics (mean, variance),
the correlation coefficient, t-statistic, and p-values.

Based on table 8, the paired t-test results between the Coulomb Counting and
OCV-SOC methods at a temperature of 25 °C. The SOC estimates from both
methods exhibit a very strong correlation (r = 0.9945). However, based on the results
of the paired two-sample t-test, the difference between the two methods is statistically
significant (t=295.35, p < 0.05), with the average SOC value from the OCV method
being lower than that of the Coulomb Counting method.
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Table 7. Paired t-test between Coulomb Counting and OCV-SOC method at That =0 °C

Method CC SOC0 OCV _SOC0
Mean 0.534423101 0.500313126
Varlance 0.072254248 | 0.081615174
Observations 67152 67152
Pearson Correlation 0.99880693

Hypothesized Mean 0

Difference

df 67151

t Stat 408.4831364

P(T<=t) one-tail 0

t Critical one-tail 1.644876319

P(T==t) two-tail 0

t Critical two-tail 1.959999313

Table 8. Paired t-test between Coulomb Counting and OCV-SOC method at Tbat = 25 °C

Method CC SOC25 OCV _S0C25
Mean 0.500152769 0.466836366
Variance 0.083329573 0.082968891
Observations 72314 72314
Pearson Correlation 0.99446912

Hypothesized Mean 0

Difference

df 72313

t Stat 295.3494959

P(T<=t) one-tail 0

t Critical one-tail 1.644874699

P(T<=t) two-tail 0

t Critical two-tail 1.959996791
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Table 9 below shows the paired t-test output comparing Coulomb Counting and
OCV-SOC method at Tbat = 45 °C. It includes descriptive statistics (mean, variance),
the correlation coefhcient, t-statistic, and p-values.

Based on table 9, shows the t-test results between the Coulomb Counting and
OCV-SOC methods at a battery temperature of 45 °C. The SOC estimates from
both methods demonstrate a very high correlation (r = 0.9963). However, the t-test
indicates that the mean values of the two methods differ significantly (¢ = 241.69, p <
0.05), with the OCV method tending to produce lower SOC values compared to the
Coulomb Counting method.

The conclusion from the statistical analysis indicates that although SOC estimation
using the OCV-SOC method shows a very high correlation with the Coulomb
Counting method, the OCV method consistently yields lower SOC values. This
discrepancy may be attributed to the sensitivity of the OCV method to temperature
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Table 9. Paired t-test between Coulomb Counting and OCV-SOC method at That =45 °C

Method CC _50C45 OCV _S0C45
Mean 0.499940902 0.477468691
Variance 0.083338441 0.081926728
Observations 72343 72343
Pearson Correlation 0.996252049

Hypothesized Mean 0

Difference

df 72342

t Stat 241.6911284

P(T<=t) one-tail 0

t Critical one-tail 1.644874691

P(T<=t) two-tail 0

t Critical two-tail 1.959996778

variations and the voltage relaxation phenomenon, which is not directly accounted
for in the estimation process.

4. Conclusion

Based on the accuracy analysis of State of Charge (SOC) estimation using Coulomb
Counting and Open Circuit Voltage-State of Charge (OCV-SOC) methods at three
different temperatures (0 °C, 25 °C, and 45 °C), the findings are as follows: The
1RC model demonstrated the lowest error compared to 2RC and 3RC models at 0
°C, 25 °C, and 45 °C; therefore, the 1RC equivalent circuit model was selected as
the battery model for SOC estimation using both Coulomb Counting and OCV-
SOC methods. Coulomb Counting outperformed OCV-SOC, achieving an R? value
of 1 at all temperatures, although this near-perfect accuracy likely resulted from
ideal simulation data that ignored external factors such as current leakage and sensor
measurement fluctuations. The OCV-SOC method performed reasonably well across
the temperatures but showed higher errors than Coulomb Counting, particularly at
25 °C and low SOC levels (0-10%), likely due to reduced voltage estimation accuracy
in this range.

Although this study uses real experimental data under controlled conditions, real-
world implementation of SOC estimation methods faces several additional challenges.
Sensor noise, for instance, can significantly affect the accuracy of current measure-
ments in the Coulomb Counting method, leading to accumulated errors over time.
Similarly, capacity fade caused by battery aging can alter the relationship between
voltage and SOC, reducing the reliability of the OCV-SOC method if not properly
accounted for. Leakage currents and thermal variations can also introduce inaccuracies,
especially in long-term operation. Addressing these issues requires robust filtering
techniques, periodic recalibration, or adaptive models that can compensate for such
non-idealities in real-world applications.
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Future work may focus on implementing SOC estimation under dynamic load

profiles to better reflect operational conditions in electric vehicles and energy storage
systems. Additionally, incorporating model aging effects and exploring advanced
estimation techniques such as Kalman Filters or machine learning-based methods
could further improve accuracy and adaptability in long-term battery management

applications.
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