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Abstract

This article explores the application of Deep Reinforcement Learning (Deep RL) to op-
timize energy management in photovoltaic (PV) and battery systems. The framework
introduces innovations such as Rule-Based Action Smoothing for maintaining system
stability, Proximal Policy Optimization (PPO) Multi-House Training to generalize across
diverse energy usage patterns, and Post-Controller Integration to address real-time op-
erational issues. Although the dataset originates from Ireland, the model is adapted to
Indonesia’s dual-tariff system and energy regulations. Simulation results demonstrate
significant cost reductions, achieving up to 76.61% in stable scenarios and 7.03% in
high-variability environments. While RL outperforms load following (LF) in complex
scenarios, its efficiency remains limited in stable conditions, highlighting the need for
further optimization of the RL framework. Despite these challenges, the methodology
demonstrates flexibility and resilience in leveraging renewable energy to reduce costs
and improve system efficiency. Future improvements, such as refining reward functions,
addressing over-discharge, and integrating seasonal data, will further enhance the model’s
applicability across a broad range of scenarios. This scalable approach supports Indonesia’s
renewable energy goals and provides insights for intelligent energy systems in residential
contexts.

Keywords: Deep Reinforcement Learning, Proximal Policy Optimization, Energy Management, Photo-
voltaic and Battery Systems
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1. Introduction

In the last few decades, there has been a tremendous expansion in using renewable
energy sources, mainly because of the dire need to address global warming due to
carbon emissions. International efforts like the Paris Agreement have brought forth
the necessity of restricting the increase in global temperatures to 1.5°C and achieving
net-zero emissions by the year 2050 [1]. The Intergovernmental Panel on Climate
Change stresses that these goals are crucial to preventing disastrous consequences
due to climate change. These have made governments worldwide develop policies
to speed up the transition into renewable energy, with large targets and financial
incentives directed toward capacity in renewable energies.

The Indonesian government has targeted that, by 2025, renewable energy will
make up 23% of the country’s energy mix, under Government Regulation No. 79/2014
[2]. That has given a spur to applying photovoltaic systems with battery storage for
residential and industrial sectors to improve energy efficiency and lessen dependency
on the electrical grid. The steep drop in lithium-ion battery costs, driven by the rapid
electrification of the vehicle market, has made them a viable option for integrating
renewable energy sources [3][4]. These reductions bring benefits in increasing techno-
economic viability through longer running times, high efficiencies, and larger energy
densities. In turn, photovoltaic battery systems are increasingly more affordable,
allowing houses to save on energy expenses due to better self-consumption.

While inherently laden with potential, photovoltaic battery systems (PV-battery
systems) face many hurdles in the area of energy management, especially in the aspect
of minimizing grid imports. Ineffective energy management may lead to irregular
grid imports, high energy costs, and inefficient battery utilization. In this regard,
artificial intelligence is one of the most important players and an up-and-coming tool
in developing intelligent control systems for PV-battery integration. Reinforcement
learning (RL) is one of the most promising approaches in artificial intelligence since
it copes well with large data sets and finds optimal policies in stochastic scenarios
[5]. Unlike classical control methods, the RL approach does not explicitly require
information about the environment or a definition of predetermined decision-making
structures. Therefore, it is adequate for dynamic and uncertain systems, such as PV
— battery setups in which solar production and consumption profiles present erratic
variations. Moreover, RL does not need a precise mathematical model and can learn
directly from empirical data.

Numerous studies have leveraged RL for the management of PV-battery systems.
Elshazly et al. [6] proposed a reinforcement learning framework utilizing Proximal
Policy Optimization (PPO) to manage house battery charging within smart grids in
a single-agent multi-environment system. Their approach improved grid stability,
fairness, and customer satisfaction by dynamically optimizing power allocation. On
a community scale, Xiong et al. [7] applied Deep Q-Networks (DQN) to achieve
more efficient energy scheduling than conventional methods such as round-robin
and first-come-first-serve, reducing operational costs while enhancing local resource
utilization.
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On the other hand, Xia et al. developed actor-critic reinforcement learning models
to enhance energy consumption in commercial buildings by factoring in human input
for better energy efficiency, comfort, and indoor air quality [8]. Ali et al. applied
Q-Learning for optimizing battery management in dairy operations with variable
renewable energy production, showcasing reinforcement learning’s versatility [9].
Additionally, Almughram et al. [10] developed a RL system integrating V2H (Vehicle-
to-House), stationary batteries, and PV panels for residential energy management.
Combining fuzzy Q-learning and deep learning, their approach reduced energy costs
and improved self-consumption under ToU (Time of Use) and RTP (Real Time Price)
tariff.

Real et al. [11] introduced an optimization framework based on RL incorporating
Deep RL with load forecasting for PV-battery systems. Their approach significantly
reduced energy costs and grid dependency, leveraging accurate load predictions to
enhance RL model performance. However, dependency on accurate load forecasting
introduces complexity, as prediction errors can negatively impact RL decision—making.
Kang et al. [12] developed an RL-based scheduling model for a residential building
with a PV system and BESS using PPO. Their model effectively traded off self-
sufficiency against peak load reduction, outperforming traditional TD3 and SAC
algorithms under South Korea’s energy tariff structure.

In addition, Hirtel and Bocklisch [13] proposed a PPO-based RL framework
for PV-battery storage systems that achieved cost-efficient power allocation without
requiring explicit load forecasting. Their approach simplified system complexity com-
pared to traditional methods like Model Predictive Control (MPC) while maintaining
high performance. However, similar to Kang et al. and Real et al., their work was
limited to single-house training, raising questions about scalability and adaptability
to diverse energy consumption profiles. Building on these efforts, Qi et al. [14]
introduced EnergyBoost, an RL-based framework combining MPC and Advantage
Actor-Critic (A2C) to manage house batteries. When implemented on a low-cost
Raspberry Pi device, their system demonstrated significant energy cost reductions.

While these works highlight the flexibility and potential of RL in energy man-
agement, they also reveal shared limitations. For instance, Real et al. [11] approach
relies heavily on accurate forecasting but lacks validation for handling sudden and
extreme demand fluctuations. Similarly, although achieving cost-efficient energy
scheduling, both Kang et al. [12] PPO-based model and Hirtel and Bocklisch [13]
PPO framework do not address mechanisms for recovering from RL system failures,
such as sub-optimal decision-making or unstable training processes. These shared lim-
itations could affect their robustness and reliability under highly dynamic or uncertain
conditions.

Previous literature has demonstrated the potential of RL in optimizing energy
management. However, most studies tend to focus on single-building scenarios or
specific regulatory frameworks, limiting their applicability to a broader range of con-
ditions. This study addresses these limitations by developing a generalized RL model
that can operate in previously unseen environments (such as different houses) without
retraining. Although the model is explicitly designed for Indonesia’s dual-tariff system
and local regulations as a proof of concept, its underlying methodology is crafted to be
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transferable, ensuring adaptability across various regulatory and operational contexts.
The multi-house training approach enhances the model’s generalization ability by
learning from diverse energy consumption patterns.

To bridge these gaps, this study introduces several key innovations:

* Rule-Based Action Smoothing: This innovation improves system performance sta-
bility by preventing sudden changes, thus promoting smoother battery operations
and extending battery life. It also enhances reliability, defined in this study as the
system’s ability to maintain consistent and stable battery operations by avoiding
abrupt fluctuations in battery levels. This ensures a steady energy flow and stable
performance under varying energy demand and supply conditions, focusing solely
on normal operations without considering fault scenarios.

* PPO Multi-House Training: Rather than basing the PPO training on single-
building profiles from earlier models, the present work utilizes multi-residence
training to include various energy consumption behaviors. This increases the
flexibility of a reinforcement learning agent to fit different conditions and is,
therefore, generalizable to heterogeneous residential areas.

* Post-Controller Integration: To deal with the challenge of real-time variability, a
PostController is integrated to complement the RL agent. This mechanism ensures
stability by dynamically responding to demand spikes or system failures—a critical
feature absent in many existing models.

1.1 Reinforcement Learning
Reinforcement Learning (RL) is a subfield of machine learning where an agent learns
to make decisions by interacting with an environment, aiming to maximize cumulative
rewards over time. The process relies on trial and error, where the agent receives
feedback in the form of rewards or penalties based on its actions [15]. Unlike supervised
learning, which requires labeled data, RL learns from sequential interactions, making
it well-suited for dynamic and complex environments such as energy management,
robotics, and game playing.

The RL framework is typically formalized as a Markov Decision Process (MDP)
characterized by:

* State (s), represents the current condition of the environment.

* Action (a), The set of all decisions the agent can take.

* Reward (r), feedback received by the agent based on the quality of its action.
* Policy (1), a strategy that maps states to actions.

The agent’s goal is to learn a policy (7* ), that maximizes the expected cumulative
reward over time, considering the discount factor (y) for future rewards and to
maximize the expected cumulative reward, R, , defined as:

o

Ry = Zykrﬁkﬂ (1)

=0
That RL process is effectively illustrated in Figure 1, which provides a clear
overview of the interaction between the agent and the environment [16]. RL is
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a cyclic process in which an agent learns how to make optimal decisions while
interacting with the environment. At every iteration, it observes the current state
(s;) of the environment, encapsulating its present conditions. With this, the agent
makes an action (a;) guided by policy (7) this means a general framework for behavior.
This action’s execution affects the environment, triggering a transition into a new
state (s.+1) and generating a reward (y) that informs how good the action actually is.
This reward becomes a feedback system for the agent to improve its policy iteratively.
Through repetition of this interaction, an agent adjusts its strategy for maximizing
the overall reward through a careful balancing of short-term and long-term gains.
Through a series of interactions, the agent learns an optimal policy (r*) that allows it
to navigate the environment and successfully achieve its long-term objectives.
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State (5,) Reward (r,)

Action(a,)

I
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Figure 1. Reinforcement Learning Process: Interaction Between Agent and Environment

1.2 Deep Reinforcement Learning

Deep Reinforcement Learning (Deep RL) develops and extends the fundamental
ideas in traditional RL by bringing the RL methodologies together with the deep
neural networks, thereby giving an effective solution to handle big state and action
spaces and their management. Compared with the conventional RL approaches
using explicit representations and hand-engineered features, Deep RL uses neural
networks as universal approximators, enabling agents to generalize to enormous and
continuous environments. This would eventually allow Deep RL to scale up and
solve complicated real-world tasks, from robotics to energy optimization and game
playing. The classic example of DQN, as introduced by Mnih et al. in [17], was the
first successful attempt at approximating the Q-value function using convolutional
neural networks, playing Atari games at human-level performance— beating the
so-called "curse of dimensionality" behind large state spaces.

While traditional RL has focused on learning policies or value functions from
tabular representations, Deep RL automated feature extraction from raw inputs, sig-
nificantly reducing the dependence on domain expertise. The last has been especially
true for tasks needing end-to-end learning, where an agent directly learns from raw
sensory data without pre-processing. With its ability to automatically extract features,
Deep Reinforcement Learning adapts to dynamic and changing environments, which
leads to significant developments in areas such as autonomous systems and renewable

energy.
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Deep RL contains a few algorithms: value-based, policy-based, and actor-critic.
Valuebased methods, like DQN, approximate the optimal action-value function for
the agents to select actions that maximize expected rewards. Policy-based approaches,
such as Proximal Policy Optimization (PPO), update policies directly to learn effec-
tively and obtain consistent performance in continuous action spaces [18]. Actor-critic
architectures, as represented by Deep Deterministic Policy Gradient (DDPG), incor-
porate both value-based and policyoriented components; an actor is used for proposing
actions, and a critic is used for estimating the value of proposed actions, making it
suitable for high-dimensional environments with continuous actions [19].

This study has chosen PPO as it balances exploration and exploitation effectively,
which is critical in managing dynamic and stochastic energy environments. Explo-
ration enables the RL agent to test and discover new strategies for handling variations
in energy consumption and PV production. At the same time, exploitation ensures that
the agent applies learned policies to achieve stable and efficient energy management.
By integrating PPO, this study addresses the need for adaptability across diverse
residential energy consumption patterns, ensuring the system can reliably optimize
battery operations while minimizing grid import costs under varying conditions.

2. Preliminary Framework and Data Analysis

2.1 Proposed System Framework

An overview of the proposed system architecture is depicted in Figure 2. In this
paper, the controller is designed as a hybrid framework consisting of a proposed Deep
Reinforcement Learning (Deep RL), especially the PPO model, and a Post-Controller
for risk management. The Deep RL model serves as the primary decision-making unit,
optimizing energy flow by deciding actions such as charging (PCh) or discharging
(PP%) the battery and importing power from the grid (grid import ((PS"))). The
model operates based on inputs such as PV production (PFV'), residential load demand
(L¢), and the current battery level.

The Post-Controller is designed to complement the RL decisions, ensuring the
system’s reliability and robustness. It guarantees that the demand of the house load
(L¢ ) is always met, even if the decisions taken by the RL model are insufficient to
supply the required power. In such cases, the Post-Controller independently sources
the extra power from the grid without influencing the RL model’s decision-making
process. This complementary nature of the Post-Controller provides an additional
layer of security by mitigating the risks of suboptimal decisions in a dynamic and
uncertain environment.

While the initial system framework addresses the core challenges of energy flow
optimization and reliability, this study introduces a critical enhancement: improving
the generalization capability of the Deep RL model. Unlike the traditional approach,
which trains the model on a single house, this study will simultaneously train the Deep
RL model using data from multiple houses. Each house, from House-1 to House-
n, represents a unique environment with different energy consumption patterns,
photovoltaic production, and battery characteristics. It then trains on the various
datasets for each house so that the Deep RL model learns a generalized policy that can
adapt when there are changes in energy needs, irregularities in PV production, or
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dynamics within battery behavior. Through interaction with various situations, the
framework allows the Deep RL model to develop a strong and generalized policy that
can adapt to changes in energy needs and environmental conditions.

After training, the Deep RL model is tested on a house that was not in the training
dataset. This testing phase evaluates the model’s ability to generalize its learned policy
to unseen environments. The key evaluation metrics are minimizing grid import
costs, maintaining stable battery operations, and adapting effectively to dynamic
energy demands. This will ensure the practical success of the model in real-world
deployment scenarios, reducing the need for retraining when applied to other houses.
The proposed framework addresses the key challenges in energy optimization and
paves the way for future integration of renewable energy sources in smart houses to
make the energy ecosystem more sustainable and resilient.

Power Grid

Figure 2. The System Architecture

2.2 Data Profile and Preprocessing
The dataset used in this study originates from the StoreNet Project, which collected
highresolution electricity usage data (1-minute intervals) from residential users in
an energy community in Ireland throughout 2020 [20]. This dataset includes key
variables such as active power usage, solar panel (PV) electricity production, energy
exchange with the grid, battery charging/discharging activities, and state of charge
(SOC). Ten houses are equipped with PV-battery systems, each featuring a 3.3 kW
Sonnen Battery, making the dataset suitable for analyzing house energy dynamics
and PV-battery optimization.

To ensure data quality and suitability for analysis, several preprocessing steps were

applied:

* Duplicate Removal: Duplicate entries are removed to maintain data integrity.

* Handling Missing Values: Missing values are filled using the column mean for
highly variable house consumption data. Meanwhile, more stable variables, such
as battery level, charging power, and discharging power, were forward-filled or
interpolated as they are less prone to variability.

* Outlier Detection and Clipping: For house consumption, an outlier clipping
process was applied using the Interquartile Range (IQR) method with a factor
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of 2.5. This factor is chosen to filter extreme noise or measurement errors while
retaining naturally high consumption values relevant to energy modeling (e.g.,
peak usage during heavy appliance operation). Previous studies, such as Jurj et
al. [21], used a standard factor of 1.5 for moderate outliers in energy datasets;
however, the higher factor in this study accounts for the inherent variability in
house data.

* Resampling to 30-Minute Intervals: To reduce resolution while maintaining
temporal granularity, data is resampled into 30-minute intervals. Numerical
columns were averaged, while categorical variables were forward-filled to ensure
consistency.

As shown in Table 1, house consumption data demonstrates a wide range of
variability, with median consumption values spanning from 2.42 kW (House 1)
to 24.35 kW (House 10). The maximum value observed, 89.38 kW in House 10,
represents high-power usage events typical in real-world scenarios, such as operating
heavy appliances. A higher IQR factor of 2.5 was applied to maintain these significant
consumption patterns while effectively mitigating extreme anomalies caused by noise
or measurement errors.

In this study, the simulation is assumed to be conducted in Indonesia to adjust
data processing and electricity tariff schemes to the local context. Although the
maximum demand of 89.38 kW exceeds the typical single-phase house capacity in
Indonesia (approximately 14 kVA), this dataset was selected to provide a broad range
of variability for training the RL model. The goal is to develop a generalized control
policy capable of handling diverse consumption profiles, including those that may
be less common in local contexts. Consequently, while real-world implementations
in Indonesia are expected to have lower maximum loads, the model benefits from
exposure to these high-load scenarios during training, improving its adaptability.
Moreover, in our experiments, we validate the model on multiple houses—particularly
those with low correlation to the training set—to assess how effectively the RL agent
adapts to ‘unfamiliar’ consumption patterns.

To ensure our cost calculations accurately reflect local electricity pricing in In-
donesia, we determine the cost of electricity imported from the network based on the
Peak Load Time (PLT) and Off-Peak Load Time (OPLT) tariff schemes. According
to our resampled data, the PLT tariff is set at IDR 1,035.78 per kW (with a factor of K
equal to 2), while the OPLT tariff is IDR 517.89 per kW [22]. The PLT tariff applies
during peak hours, particularly from 18:00 to 23:00 local time, whereas the OPLT
tariff applies during off-peak hours.

The dataset was systematically filtered and divided into training and testing subsets
to evaluate the proposed framework. Statistical properties and correlation values
of energy consumption patterns across houses guided the training and testing data
selection process. These correlation values are visualized in the heatmap presented
in Figure 3, while descriptive statistics for each house are detailed in Table 1. The
analysis and dataset partitioning specifically focus on energy consumption data from
the summer months (June to August), as this period includes peak PV production and
captures diverse house energy consumption behaviors critical for the study.

The grouping of training and testing sets in this study is based on the energy
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Correlation of Daily Energy Consumption Between Houses (June to August)
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Figure 3. Correlation of Daily Energy Consumption Between Houses

consumption patterns analyzed from the statistics in Table 1 and the correlations
shown in Figure 3. Houses 2, 7, 10, and 11 were selected as the training set because
they exhibit diverse energy usage patterns and have moderate to strong correlations
with each other. In this context, 'moderate to strong correlations’ means that the
energy consumption patterns in these houses are related, which can help the model
learn more effectively, as indicated in Figure 3.

* House 10 (mean: 30.58 kW, std: 15.05 kW) demonstrates high average consump-
tion with significant daily fluctuations, making it ideal for teaching the Deep RL
model to handle dynamic and challenging scenarios.

* House 7 (mean: 24.21 kW, std: 10.36 kW) adds moderately variable energy usage
patterns, balancing consistency and variability.

* House 11 (mean: 23.20 kW, std: 6.12 kW) contributes relatively stable energy
consumption with lower variability, ensuring predictable patterns in the training
set.

* House 2 (mean: 18.11 kW, std: 5.04 kW) introduces stable and moderately varying
patterns, complementing the diversity within the training set.

These houses provide a representative dataset with varying energy consumption
and variability degrees, allowing the Deep RL model to generalize effectively across
different scenarios.
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Table 1. Energy Consumption Statistics of Houses (June to August)

House | House | House House House House House House | House | House

count | 92,00 | 92.00 | 92.00 | 92.00 | 92.00 | 92.00 | 92.00 | 92.00 | 92.00 | 92.00
mean | 4.35 18.11 19.04 | 33.79 | 11.33 | 2421 | 30.58 | 2321 11.15 6.55
std 3.04 5.04 2.80 13.73 274 10.36 | 15.05 6.12 1.64 1.94
min 1.07 9.77 10.83 7.95 6.52 3.94 11.63 6.98 8.34 2.93
25% | 1.90 | 1421 | 1734 | 26.22 9.78 18.19 | 20.26 | 20.22 | 10.21 521
0% | 243 17.08 | 18.85 | 3293 | 11.14 | 21.27 | 2478 | 2435 | 10.87 6.49
75% | 6.99 | 21.37 | 20.18 | 3936 | 12.63 | 27.54 | 38.20 | 2694 | 1175 7.78
max | 1206 | 3397 | 26.69 | 7557 | 18.53 | 54.54 | 89.38 | 34.11 18.01 11.78

For testing, Houses 1, 4, 13, and 17 were selected as candidates because they
exhibit unique and contrasting patterns that are not prominently represented in the
training dataset:

* House 1 (mean: 4.35 kW, std: 3.04 kW) represents low and stable energy con-
sumption.

* House 17 (mean: 6.55 kW, std: 1.94 kW) provides a similarly low consumption
profile with even less variability.

* House 13 (mean: 11.15 kW, std: 1.64 kW) demonstrates a moderate but highly
stable profile.

* House 4 (mean: 33.79 kW, std: 13.73 kW) is included due to its exceptionally
high and variable energy consumption, which provides a challenging and extreme
case for the model to evaluate.

Referring to Figure 3, these test houses have low correlations with the training
houses (most values below 0.1), making them ideal for evaluating the model’s ability
to generalize to unseen scenarios. This division ensures the Deep RL model is trained
on a broad range of realistic patterns while rigorously testing its adaptability and
performance in handling novel energy consumption behaviors, including extreme
conditions such as those exhibited by House 4.

3. Decision-Making and Control Framework

3.1 Grid Import Minimization and Energy Balancing

The energy management problem in residential PV-battery systems in this study
involves optimizing the operation of energy storage to minimize grid energy costs
while ensuring that house energy demand is consistently met. This is a dynamic
decision-making problem affected by uncertainties in solar PV production, house
energy consumption, and electricity prices. In this study the system operates under
the assumption that no power is exported to the grid. All surplus energy from the PV
will be stored in the battery or reduced to meet the load demand if the battery is full.
Therefore, at timestep ¢ the system must make decisions regarding:

* How much power to charge or discharge the battery
* How much power to import from the grid to meet the house load demand
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The optimization process aims minimize the total grid energy cost (C,,,,) over a
time horizon (T) by efficiently managing energy flows among the PV system, battery
storage, and house demand, while ensuring adherence to operational constraints.
Since grid export is not allowed, the cost is given by:

T
Ctotal = Z Ptcnd)\t (2)

=t;

The total energy cost is calculated based on the power imported from the grid
(PGridy at each timestep () and the corresponding electricity tariff (A;). Here #; repre-
sents the initial timestep, and T marks the end of the time horizon.

To achieve the objective of cost minimization, the optimization problem is subject
to several constraints. First, the total energy supply must equal the house load demand
at every time step. Constraint in Equation (3) ensures that energy supply and demand
are balanced, accounting for all sources and sinks in the system:

PO Bl B > o1 B )

The values of PC" and PP represent the charging and discharging rates of the
battery, respectively. In this study the P<"=—PP# is imposed to reflect the operational
characteristics of the battery to ensures that the battery cannot simultaneously charge
and discharge at the same time, maintaining the physical feasibility of the system.
Furthermore, PtCh and PPiS are limited the maximum charging and discharging
capacities of the battery, as determined by its specifications.

To further ensure the operational safety and efliciency of the battery system, the

energy stored in the battery at any time step (Eba1) is constrained within a safe range
bat )

between 10% and 90% of its maximum capacity (E,i..

0.1 Ebat

max

< Ehat < 0.9 b (4)

max

This restriction prevents overcharging and deep discharging, which could lead to
premature battery degradation and reduced system reliability. While () represents
the intended action by the agent, the actual change in Etb“’ . Specially a; may not
directly translate to energy flow due to safety limits (10-90% of battery capacity). The

actual energy change is calculated as the difference in battery level (AE2 = Effi — Ebar)
after considering these constraints.

EN+m g if a;> 0
) .
Eif = B+ L if g, < 0 (5)
E}if a;=0

Equation (5) is used to calculate EX for the next timestep iteration based on
the action taken by the RL agent. The charging and discharging efficiencies are
represented by 1,and np;;, respectively. These parameters are needed to ensure that
energy transitions are realistic and within the battery system’s physical bounds.
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3.2 Reinforcement Learning-Driven Control Design

The control scheme proposed in this study utilizes PPO as the core decision-making
algorithm for optimizing battery charging and discharging. This approach addresses
the dynamic and stochastic nature of energy consumption and PV production. By
formulating the problem as a Markov Decision Process (MDP), PPO learns optimal
energy management policies through direct interaction with the energy system,
ensuring effective and reliable control under varying conditions [15].

The MDP formulation in this study is adapted from the framework introduced by
Real et al.[11], previously applied to PV-battery systems to define transition dynamics
and grid import rules. This MDP structure remains fundamental in describing the
relationships among PV production, energy consumption, and energy management
decisions. However, this study introduces some important modifications to enhance
the stability and efficiency of the system, as detailed below:

3.2.1 State Representation Refinement

The state space has been reduced from eight variables to seven, as shown in Equation
(6). This refinement eliminates redundancy, such as the load prediction variable,
making the control system computationally more efficient. The retained variables
include PV production (PF"), load demand (L), grid import (PS7), current and
previous battery levels (Ebar | Erbfi), electricity tariff (A;), and the battery energy change
(AEiJat = phat _E%at)‘

t+1
Sy = { Lo PV PGl B AR | (6)

This reduction ensures the model focuses on essential dynamics while eliminating
the need for predictive input data, streamlining computational demands.

3.2.2  Action Space and Transition Dynamics

The action space comprises decisions for charging (a; > 0) , discharging (4, < 0) and
idle (a, = 0). These actions directly affect EX and PS | governed by transition
dynamics. At each time step 7 the agent observes the current state (S;) and selects
an action (a;) based on its probabilistic policy. The minimum change of 4, value is
determined by the minimum incremental value i, given that the applied actions are
discrete. The action updates the battery energy level and adjusts the grid import there
depending on charging or discharging efhiciency if is a deficit or surplus of energy

(80):

61? = P{)V—L[ (7)

The system then transitions to the next state (S;+1), reflecting updated variables, while
providing a reward signal to guide learning. This process allows the RL agent to
iteratively learn optimal policies under stochastic environmental conditions, effectively
adapting to uncertainties in PV production and load demand.
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3.2.3 Grid Import Rules
The grid import rules are adapted from Real et al.[11] to ensure the agent appropriately

adjusts PG hased on its chosen 4, and &;. For charging actions (a; > 0), grid import
is determined by:

PtGrz'd _ {al_ S lf ar > & (8)

0 otherwise

For discharging (a, < 0), grid import is updated based on battery constraints (Eba);

18,a,l 1'fE£’“’ > O.lE[,’,féxandét < Oand a; < &

pGrid 0 if EM > 0.1EM! and 8, < Oanda, < 8, o)
! max(18 = Mpi X npiER)if EX < 0.0Eb  ands, < 0

Ebatifgbat < 0.1Eb and 5, > 0

max

3.2.4 Reward Function Adjustment

The reward function in this study is designed to guide the RL agent towards achieving
practical energy management objectives, such as minimizing grid imports, maximizing
the utilization of PV production, preserving battery health, and ensuring system
stability. By providing context-sensitive feedback based on the dynamics of charging,
discharging, and idle actions, the reward function shapes the agent’s learning process
to align with real-world operational priorities. At each time step, the total reward
(Ryor) is computed as:

Ryor = w Ry, + waRpjs + w3Rpyp, + waRe,iy (10)

Here wy, wp w3, and wy are weights reflecting the priorities of different operational
objectives. The highest weight, w4 = 0.5 is assigned to minimize reliance on grid
imports, particularly during high-tariff peak hours. The other weights are set asw,
= 0.3, wp = 0.3, and w3 = 0.2, determined through trial and error to balance the
competing objectives effectively.

The charging reward is designed to encourage efficient energy storage while
penalizing overcharging and charging during deficits. For actions corresponding to
charging (a; > 0), the reward is given as:

max

157 BCifEl < 0.9 Elt and 8> 0 and 5, < 0.1 El!

_ h Loy max max (1 ])

=3 L b ypbat < 0.9 Ebat gud §, > 0 and 5, > 0.1Eb

P[h P[h max max

~(pLo)ifEbT > 0.9Eb:

5, .
—5L otherwise
Py,

From equation above, a significant penalty is applied to discourage overcharging,
which can degrade battery health. Small surpluses (§, < 0.1 Ebat
(5, > 0.1 Eb! ) receive higher rewards, than lower surplus (8, > Oandd; < 0.1 Ebat ),
prioritizing efficient utilization of PV production, while deficits (§; < 0) and in any

other condition incur penalties to discourage grid energy use for charging.

). Larger surpluses
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The discharging reward encourages the agent to use stored energy efhiciently
during energy deficits while avoiding deep discharges or unnecessary discharging
during surpluses. For actions corresponding to discharging (a; < 0), the reward is
given as:

1 .
Py Ef"” < Ezﬁx
1.511 - %hf d; < 0 and not peak hour
Rpjs = § 151 = 21+ 0.5if 8, < 0 and peak hour (12)
125 if8; > 0 ands; < 0.1EM,
2750 if 8, > 0.1 bt
During energy deficits, the reward scales inversely with the deficit magnitude, en-
suring the agent prioritizes significant shortfalls. Additional rewards (+0.2) during
peak hours align the agent’s behavior with real-world cost-saving goals. Penalties
for discharging during surpluses are scaled proportionally to prevent wasteful battery
usage. For Idle actions (q; = 0), the reward (Ryy,) is given by:

1if86,=00r8 >0
Ry = q 0518/ 5—if 8 < 0 (13)
0 otherwise

In balanced conditions and when a surplus is available, agents receive a reward to
increase stability and avoid unnecessary adjustments. Then, in a deficit situation, a
penalty is applied to motivate agents to actively address the energy shortage, thereby
reducing their dependence on the grid. The grid import penalty discourages reliance
on external energy sources, particularly during high-tariff peak hours, It is expressed
as:

Ryiq = —log(1 + PETN) (14)

The grid import penalty is part of the objective function (Equation (2)). Logarithmic
scaling is used to gradually increase the penalty as grid usage and tariff rates rise. This
method prevents excessive penalties for small imports while ensuring a proportional
penalty that reflects the dynamic nature of energy costs. Using logarithms in the
penalty function allows for a more controlled increase in response to higher energy
consumption and tariff rates, which helps avoid disproportionately large penalties
when grid import increases slightly.

3.2.5 Rule-Based Action Smoothing

One of the major contributions of this work is the incorporation of a rule-based action
smoothing mechanism, which was not implemented in the framework of Real et al.’s
framework [11]. This mechanism will address the abrupt fluctuations in charging and
discharging actions often found in RL-generated policies to have smoother transitions
in realworld implementations and operational reliability. The smoothing mechanism
incorporates adaptive rules to refine the charging (a; > 0) and discharging (a; < 0)

actions based on the battery level (EX), energy balance (8,), and previous actions (
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a,~1). Adaptive rules for charging actions. For charging actions (a; > 0), the following
rules are applied:

min(1.5a5,m,Py,)if 8¢ > 0.7P,
min(max(0.05, P‘Sf;)a[’nd’p(h)if& <0.2P,,
min(ar, Mg, Poy)if EX < 0.2 EY and 8, > 0.5P,,

min(0.5a;,m,P,;) if 0.5 Ebt < Ebat < phat

(15)

ar =

When the energy surplus exceeds 70% of the maximum charging rate (P,,), the
charging action is accelerated by capping to n, P,. Conversely, for minimal energy
surplus (8, < 0.2 P,), charging is moderated by scaling a; proportionally to the surplus.

Intermediate battery levels (50% to 90% of Ebat

oar . ) further reduce charging rates for

operational stability. At critically low battery levels (E < 0.2 Eb ), charging is

boosted if the energy surplus is sufficient (52% >0.5 P,;,). Adaptive rules for discharging
actions. For discharging actions (a; < 0), the following rules ensure stability:

0 lJ[ 5[ >0
ar = < min(a;, MpisPpis) nyi’at > 0.7 E%x and &; < 0.5 Pp;, (16)
min(0.5a;, MpisPpis) if 0.3 EX < Ebt < 0.6 Ebat

Discharging is avoided entirely if there is an energy surplus to prevent unnecessary use
of stored energy. When the battery is near full capacity E/ > 0.7 Eb# and the energy
deficit (5, < 0.5 Pp;;) substantial, the discharging rate is capped to 1p;sPp;, to meet
demand efficiently. For moderate battery levels (30% to 60% of EL% ) discharging
is scaled down to maintain system balance while preserving battery health. Action
smoothing with inertia and damping. Once the adaptive rules are applied, the action
(ar) smoothed by incorporating inertia (8) and damping (?) factors to ensure gradual
transitions and reduce abrupt changes:

a;=0a,_1+(1-0)q (17)

ay = 67[2 (18)

The inertia factor (6) blends the current action with the previous action (a,_1) creating
a smoother transition between time steps. The damping factor () further adjusts the
smoothed action to enhance stability and reliability under varying environmental
conditions. In this study, 6 = 0.6 and ¢ = 0.9 were determined through a process
of trial and error. These values were found to provide a balance between stability
and responsiveness, ensuring practical operational reliability while maintaining the
flexibility of RL-generated policies.

3.3 Post-Controller Design

The Post-Controller is introduced as an ancillary mechanism aimed to ensure the
load demand (L,) is always satisfied. The controller operates independently of the
RL model and turns ON to draw power from the grid when the offered energy is
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inadequate to meet the demand. he Post-Controller implementation is based on the
principle of energy balance introduced in Equation (3), ensuring the total supplied
energy is not less than L; . The energy gap (G;), representing the energy supply
shortage, is defined as:

Gy = (PC" + PPV — i+ 1PP¥)) — I, (19)

Where, actual power Pfh and PP is are determined by changes in the battery level,
(AED) a5 expressed in Equation (20) and (21). To guarantee that L, is consistently
satisfied, the Post-Controller imports additional energy from the grid equivalent to
the calculated energy gap. This would activate the Post-Controller to supplement
the RL-calculated grid imports by adding the absolute value of the energy gap, IG; 1),
only when the energy gap is negative.

bat
peh - ﬂgf AEY > 0 (20)
t n | t
Ci
PP¥ = AEV™ by, if AEY <0 (21)

4. Experimental Simulation Framework

The RL environment in this study was implemented using the OpenAl Gym frame-
work [23], leveraging Python programming. The computational setup utilized for the
simulation consisted of a laptop with an AMD Ryzen 3 5300U processor (8 CPU cores
at 2.6 GHz) and 12 GB RAM. The hyperparameters for the PPO model, presented
in Table 2, were carefully fine-tuned to achieve optimal performance over a 7-day
horizon with a 30-minute timestep resolution.

Table 2. Hyperparameter Setting of PPO

Parameter Value Description
Policy Network MipPolicy The neural network arch]lecl.ure used to approximate
the policy
Seed 4 Ensures reproducibility by initializing a fixed random

number generator
Controls the step size for updating the neural network

Learning Rate 1x10°° -
weights
. Determines the importance of future rewards in the
Discount Factor L decision-making process
Timesteps per Update 336 Number of time steps collected before performing a

policy update
112 Number of samples used in each gradient update to

Batch Size . . o
improve learning stability
Clip Range 01 Limits the magmluc_.ielol"polltf):' changes to ensure
training stability
Value Function Scales the contribution of the value function loss in
. . 0.5
Coefficient the total loss
Gradient Norm 0.5 Prevents large gradient updates by capping the
Clipping : gradient norm

Entropy Coefficient 0.01 Promotes exploration by encouraging policy diversity




JJECBE 59

The PPO model was trained using data that had been resampled to a 30-minute
resolution to accurately reflect real-world energy usage patterns. The primary dataset
and its variables, outlined in Table 3, were used to configure the energy management
environment and simulate realistic scenarios.

Table 3. Dataset Variables

Parameter Value

. . , 1,035.78 (18.00 — 23.00),
A¢ (electricity price) IDR/KW 517.89 (otherwise)

PE™ and PP (charging and discharging rate) kW 1.65
Nen and 1p;s (charging and discharging efficiency) 95%
Eb2t (battery capacity) kW 33
i (Minimum charging/discharging incremental value) kW 0.01

4.1 Training Phase

The training procedure involves randomizing houses to expose the RL agent to various
energy management scenarios. Each episode begins with randomly selecting one of
four residences, each with a unique energy consumption and PV production profile.
The training is designed to cover 30 complete cycles of each house in the dataset
(30 episode per house), ensuring a thorough understanding of each house’s energy
dynamics. After each episode, the setting is reset, and a new residence is randomly
chosen for the next episode. By frequently encountering a wide range of conditions,
the agent develops a strong and durable strategy capable of managing the dynamic
and stochastic nature of real-world energy systems.

4.2 Testing Phase

The testing phase will assess the PPO model’s adaptability to conditions not present in
its training set. This is a crucial evaluation of the agent’s capacity to adapt to previously
unseen houses with varying energy usage and PV production patterns. Unlike the
training phase, which exposes the model to a range of dwellings, testing isolates the
agent’s performance under unexpected situations—mirroring real-world deployment
scenarios .

Testing leverages the PPO algorithm’s stochastic nature to navigate the inherent
uncertainty in PV production and energy consumption. As Bao et al. [24] highlight,
stochastic settings accurately represent the unpredictability and fluctuation of renew-
able energy sources. Unlike deterministic models, the PPO framework learns directly
from past data, enabling the system to effectively navigate complex, real-world energy
dynamics.

While a rule-based mechanism is used to smooth RL-generated actions for op-
erational stability, the policy remains stochastic. This ensures the agent’s ability to
explore and adapt flexibly to fluctuating energy conditions. The integration of stochas-
tic policy production with deterministic smoothing guarantees a practical balance
between adaptability and operational reliability. The testing process, repeated ten
times for each configuration, mitigates the inherent randomness of stochastic policies.
These iterations capture variations in policy outcomes, providing a comprehensive
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view of the system’s performance. The results of the grid import costs are the average
values of ten tests. The battery level is represented by the 10th simulation (the last
simulation).

5. Result and Discussion

5.1 Simulation Result

Simulations are conducted in this study in order to validate the effectiveness of RL
agents in optimizing energy management over houses with diversified energy con-
sumption profiles. These simulations were applied to houses with characteristics
different from those in the training dataset, as described in data profile and preprocess-
ing section. In this case, the grid import initial was assumed as zero, and the battery
level is initialized with the first value from the dataset.

Table 4. Summary of Average Grid Import and Energy Cost Across Houses (June - August)

Avg. Grid Import (kW) Avg. Energy Cost (IDR)
Baseline RL LF Baseline RL LF
']*0”“ 6.83 2.44 0.90 5395.86 1261.95 609.91
?"”se 24.78 29.08 23.64 16197.37 15057.95 15875.75
']*30”“ 741 6.54 4.64 4178.57 3388.48 2731.59
'1*70”5'3 297 237 0.71 1834.25 1228.06 554.46

Table 5. Summary of Grid Import and Energy Cost Reduction Across Houses (June - August)

Grid Import Reduction (%) Energy Cost Reduction (%)

RL LF RL LF
House 1 64.32 86.78 76.61 88.70
House 4 -17.34 4.60 7.03 1.99
House 13 11.68 3735 18.91 34.63
House 17 20.21 75.96 33.05 69.77

Table 4 and Table 5 compare the baseline with the results of RL implementation
and simple load following model (LF). The baseline is the result of the original power
recording from the dataset without any further changes applied. However, the tariff
is adjusted to Indonesian-based to ensure consistency in the cost-value calculation
across all models. Therefore, the method of controlling the battery charging action
in the baseline is unknown.

Meanwhile, the applied load following works to control battery charging with a
simple rule: when there is an energy surplus, the excess energy from PV production
is used to charge the battery until it reaches the maximum capacity (90% of the total
battery capacity). Conversely, when there is an energy deficit, where consumption
exceeds PV production, the battery will be lost to meet energy needs. However,
energy release is limited to the minimum battery capacity (10% of the total capacity).
If the battery cannot fully meet the energy needs, the energy shortage will be imported
from the electricity grid. In this condition, the battery does not charge. In addition, if
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PV production remains the same as consumption, there is no charging or releasing of
energy from the battery, so the battery status remains at the same level. As shown
in Table 4 and Table 5, the RL model can reduce energy costs due to power imports
from the grid in each house compared to the baseline. However, RL’s performance is
still inferior to the next load, resulting in a more significant overall cost reduction.

As shown in Table 4 and Table 5, the RL model can reduce energy costs due
to power imports from the grid in each house compared to the baseline. However,
RL’s performance is still inferior compared to the next load, which results in a more
significant overall cost reduction. House 4, however, presents a unique case. Its high
average energy consumption of 33.79 kW and very high variability, with a standard
deviation of 13.73 kW, challenge simple energy management strategies. However, the
RL model’s adaptability is impressive, demonstrating superior energy cost efficiency
compared to the load following in this scenario.
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Figure 4. House 4: Daily Comparison of Energy Costs and Grid Imports: Baseline vs RL Agent

In this case, even though the level of power import from the grid is higher than
the baseline, at 17.34%, the RL model still manages to generate a lower final cost. This
underscores the RL model’s ability to make more optimal decisions, particularly in
utilizing Off-Peak Load Time (OPLT) and minimizing power imports during Peak
Load Time (PLT). The 5.04% efhiciency difference between RL and load following in
House 4 further demonstrates the potential of RL in handling more complex scenarios
compared to simple rule methods like load following. Figure 4 visually represents
how the RL agent in House 4 can reduce energy costs in July. In that month, RL was
able to cut energy costs by 9.8% despite an additional 15.07% grid import compared
to the baseline.

This study found that one of the main weaknesses of the RL model is its tendency
to trigger over-discharge, especially in houses with low energy consumption and
stable variability, such as House 1, House 13, and House 17. This pattern is seen from
the frequent power discharge exceeding the load demand, even when the load has
been met. As a result, the battery capacity reaches the minimum limit faster, so the
system must rely on power imports from the grid to meet the energy demand at the
next timestep. This pattern is analyzed from House 17, with the results in Figure 5
showing the battery level, Figure 6 showing the total available energy, and Figure 7
representing the charging and discharging time.
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In contrast, the LF method shows a more efficient power discharge because it is
only carried out according to actual needs.

- Baseline Battery Lavel
—— RL Battery Level . £ S -
-+ PV PrOGUCtiOn Thee ] i hN '

— y R S

Timestep

(a)

-=- Baseline Battery Level — R —
— Load Following Battery Level S i [ .. -
w0 P Proguction e \ b 4

Energy (kW)

Timestep

(b)

Figure 5. House 17: Battery Levels and PV Production: a) RL & b) LF

One of the causes of this over-discharge is the lack of priority in battery capacity
management in the RL reward function. This Overcharge phenomenon can be seen
in Figure 6 and Figure 7 before the 48th timestep (1 day). The RL model focuses
more on reducing the overall energy cost without considering the impact of excessive
battery discharge. From Figure 6, it can also be seen that the designed Post-Controller
works well, namely maintaining the load to be met, which is represented by the gray
shading. On the other hand, the RL model does not have a validation mechanism that
ensures that the battery power released is comparable to the load requirements. This
causes energy waste that not only reduces efficiency but also results in suboptimal grid
usage.

Table 6 shows that the efficiency of the RL model varies depending on the charac-
teristics of the house. In House 4, which has high consumption and large variability,
RL can surpass the load following efficiency even after 10 training episodes, reflecting
good adaptation to the complex environment. In contrast, in houses with stable con-
sumption, such as House 13 and House 17, the improvement in RL efhiciency tends to
be stagnant or insignificant, indicating the limited adaptation of RL to environments
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Figure 7. House 17 RL Charging and Discharging Power

with low variability. Computational constraints limit the training to 30 episodes, so
the full potential of RL has not been fully explored in this study.

Table 6. Impact of Episode Count on Grid Import and Energy Cost Reduction

Grid Import Reduction (%)

Energy Cost Reduction (%)

Eg:[:_:l‘e House House
1 4 13 17 1 4 13 17
10 64.04 -22.23 12.22 18.90 76.43 3.16 19.41 31.94
20 64.55 -19.54 12.49 20.32 76.76 529 19.65 33.14
30 64.32 -17.34 11.68 20.21 76.61 7.03 1891 33.05

The reward trend in Figure 8 shows a gradual increase during training as the
number of episodes increases. This trend is consistent with the results in Table 6,
which show an increase in the efficiency of the RL model in most scenarios, especially
for houses with more complex energy consumption patterns, such as House 4. This
finding suggests the potential for the RL model to continue improving with additional
training, although there is still variation in performance for houses with more stable

characteristics.
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Figure 8. Moving Average Reward Trend of the RL Model (30 Episode Training)

5.2 Discussion

This study develops a general RL model through multi-house training, allowing
direct application without retraining. This approach is relevant in the real-world
context, especially in developing countries such as Indonesia, which is in the early
stages of energy transition. With this model, PV-battery customers without an energy
consumption history can use the optimal control system directly. This study found
that RL’s efficiency is still lower than simple methods such as load following (LF) in
specific scenarios. However, RL can surpass LF if further optimization is carried out.
Adding training data is more representative of testing data if the goal is to create a
more targeted model. Because in real-world applications, training with data similar
to the target will be more effective and better. However, because the primary purpose
of this study is to investigate the effect of applying the RL model to unfamiliar homes
(not yet recognized by the model), this was not done by selecting testing data with a
low correlation with training (0.1). In addition, further development of the RL model
is also needed, such as improvements and the use of other RL model architectures
that need to be explored, as well as improvements to rewards and rules in RL that can
further pressure the model to avoid over-discharge (a problem that occurred in this
study).

The advantages of RL are still visible in houses with high consumption and large
variability (House 4), where RL outperforms LF with its flexibility in adjusting energy
strategies based on consumption and tariff dynamics. In addition, rule-based action
smoothing helps keep battery charging and discharging smooth, protecting battery
health and life. An example can be seen in Figure 9, where even though House 4’s
consumption variability is high, the battery level remains stable within the limits of
10-90% of maximum capacity. In addition, this study also validates RL’s ability to
meet loads that are not explicitly stated in previous studies and safety measures when
RL fails to meet the load, namely with the Post-Controller.
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Figure 9. House 4: Battery Levels and PV Production

This study uses energy consumption data focused on the summer season (June to
August). This selection is based on the high PV production during the summer and
the diversity of household energy consumption patterns that better reflect the real
challenges in energy management. However, energy consumption and PV production
characteristics in other seasons—such as the rainy season or seasons with lower solar
radiation—are significantly different from summer. Integrating datasets from various
seasons in future studies will be an important step in evaluating the generalization
ability of RL models to more complex seasonal fluctuations.

In addition, local regulations that limit energy management options also influ-
ence challenges in optimizing energy. One example is the inability of customers in
Indonesia to export surplus energy to the grid because current regulations prohibit
the sale of energy from customers to the electricity network [25]. This causes surplus
PV energy only to be used for battery charging or to be unused, which directly limits
the potential efficiency of the system. In this context, testing RL models on data from
various seasons can also provide additional insights into managing surplus energy
during periods of low consumption or fluctuating PV production.

6. Conclusion

This study demonstrates the effectiveness of reinforcement learning (RL) agents
in improving energy management for houses with diverse consumption profiles.
The RL agent achieved cost reductions, particularly in challenging scenarios with
high variability. In particular, House 4, characterized by a high average energy
consumption of 33.79 kW and high variability (standard deviation: 13.73 kW),
reduced energy expenditure by 7.03% while maintaining battery levels within the
recommended 10-90% capacity range. In this scenario, RL outperformed the load
following (LF) method, showcasing its superior adaptability in dynamic environments
where LF’s simple fixed rules struggle to respond effectively to fluctuations.

In more stable contexts, such as House 1, the RL agent reduced energy expenses
by 76.61%, proving its ability to adapt across changing house profiles. However, in
cases like House 13 and House 17, which exhibit stable consumption with minimal
variability, the load following (LF) method generally provided comparable or even
better performance due to its simplicity and direct approach, which aligns well with
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stable energy patterns. This highlights RL’s potential while also emphasizing the need
for further optimization in low-variability scenarios.
The key contributions of this study are:

* Rule-Based Action Smoothing: This was an important method to ensure stable
battery performance, ensured stable battery performance by preventing abrupt
variations and protecting battery life. The RL agent was able to charge the
batteries gradually during the Off-Peak Load Time (OPLT) and discharge them
at controlled rates during Peak Load Time (PLT), as shown in Figure 5 and Figure
9. Strategies like these reduced stress on the system while improving the use of
surplus photovoltaic (PV) energy.

* PPO Multi-House Training: The RL agent trained on all houses displayed robust
generalization. For stable consumption houses, such as House 17 and House 13,
there was a persistent reduction of 33.05% and 18.91% of the energy cost, respec-
tively. However, these results highlight that while RL adapts well across diverse
profiles, it requires further refinement to fully optimize performance in stable
conditions where LF often provides competitive results with less computational
complexity.

* Post-Controller Integration: The addition of a post-controller introduced a holis-
tic solution to address real-time energy shortfalls experienced by the RL agent, as
depicted in Figure 6. This feature mitigates failures in the RL model by supple-
menting grid imports during critical moments, further stabilizing the system.

This study highlights the potential of reinforcement learning (RL) while iden-
tifying areas for improvement, particularly in stable energy consumption scenarios
where load following (LF) still outperforms RL. Future work will focus on refining
the RL architecture and reward functions to enhance performance in low-variability
settings, making RL more competitive against LF. To further improve generalization,
future studies will incorporate datasets from different seasons to investigate the effects
of seasonal variations on RL performance. This approach will evaluate the model’s
ability to adapt to annual fluctuations in PV production and consumption profiles.
Furthermore, future work will explore grid export scenarios, where surplus energy
can be sold back to the grid. This addition could significantly improve the economic
viability of RL-based systems, particularly in regulatory environments that allow for
dynamic grid interactions.
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