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Abstract
This study compares the performance of Long Short-Term Memory (LSTM) and Bidi-
rectional LSTM (Bi-LSTM) models in predicting earthquake occurrences in the Tokai
region, using data from the United States Geological Survey (USGS) dataset. Given
the importance of accurate earthquake prediction, particularly in high-risk regions, this
research focuses on assessing the effectiveness of each model in identifying occurrence and
non-occurrence events. Both models were tuned to optimize sensitivity and specificity
through adjustments in sequence length, learning rate, and additional hyperparameters,
with results evaluated using metrics including sensitivity, specificity, positive predictive
value (PPV), negative predictive value (NPV), and area under the curve (AUC). Findings
reveal that while both models achieved high sensitivity, the LSTM model demonstrated
superior specificity and AUC, indicating a more balanced performance in distinguishing
between earthquake occurrences and non-occurrences. The results show that LSTM
outperforms Bi-LSTM in terms of its classification metrics. LSTM achieved an accuracy
of 76%, compared to 55% for Bi-LSTM. For the AUC metric, LSTM scored 66%, while
Bi-LSTM scored 67%.
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1. Introduction
Earthquake prediction is a critical area of research, especially for regions like Tokai,
where seismic activity poses a constant threat to communities and infrastructure.
Efforts to predict earthquake probabilities in the Tokai region have been informed
by advancements in paleo seismology, plate tectonics, tsunami studies, and geodetic
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measurements. Rikitake [1] highlights that the mean return period of great earth-
quakes in the Tokai-Nankai zone is approximately 109 years, with probabilities of a
significant earthquake in the Tokai district reaching 35–45% for the decade following
2000, underscoring the urgency of seismic preparedness. The Tokai region, part of
the broader Nankai megathrust system, has been a key focus of seismic studies due to
its history of recurring great earthquakes, with probabilities of M8-class events within
the megathrust estimated to range from 4.3% to 96% over three years [2]. Historical
evidence shows that while the Tokai segment did not rupture during the 1944 and
1946 megathrust earthquakes, it has experienced significant seismic activity in earlier
events, such as in 1854 and 1707, indicating a history of periodic stress release along the
plate boundary [3]. This study chose Tokai Region, Japan because of the availability of
high-quality and dense seismic monitoring systems in Japan, including GPS geodetic
networks and sensor arrays, allows for precise analysis of seismic activities in the Tokai
region. Nishimura [4] detected slow slip events near the Tokai seismic gap using
these systems, providing crucial data on precursory phenomena for large earthquakes.
In contrast, Indonesia faces challenges in maintaining consistent and comprehensive
seismic data coverage.

Accurate prediction of earthquake occurrences can enable timely preparations
and potentially save lives by informing preemptive actions. However, predicting
earthquakes involves complex challenges due to the multifaceted nature of seismic
data, which includes factors like magnitude, depth, frequency, and regional geol-
ogy. Machine learning models, specifically neural networks, have shown promise
in analyzing these complex patterns, enabling data-driven approaches to earthquake
prediction.

In recent years, deep learning models such as Long Short-Term Memory (LSTM)
[5] and Bidirectional LSTM (Bi-LSTM) [6] have become popular in time-series
analysis, including seismic forecasting. Machine learning has been extensively used to
analyze complex data, including EEG signals, by employing advanced algorithms for
feature extraction and classification. For example, the study demonstrates how various
machine learning methods, such as Support Vector Machines and Random Forests,
have been successfully applied to classify EEG-based emotional states, highlighting
the versatility and adaptability of these methods [7]. In earthquake forecasting, LSTM
networks have been designed to improve the accuracy and reliability of earthquake
forecasting. These models excel at detecting and analyzing hidden patterns and
anomalies within earthquake data, which are essential for making precise predictions
in regions prone to seismic activity [8] [9]. In same context, LSTM networks are
increasingly utilized in early warning systems to forecast earthquake parameters like
magnitude and epicentral distance. By integrating deep learning with traditional
machine learning methods, these models enhance the precision of early warnings,
helping to mitigate the devastating effects of seismic events [10]. In control systems,
Machine learning has been extensively used to address the challenges of modeling
complex, nonlinear dynamics, such as those found in quadcopter attitude and altitude
control. For example, the application of neural network architectures like Elman
Recurrent Neural Networks (ERNN) has demonstrated significant improvements over
traditional PID and backpropagation methods, particularly in handling time-varying
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dynamics and enhancing control precision [11].
Experimental comparisons have shown that Bi-LSTM models outperform standard

LSTM architectures in terms of prediction accuracy, achieving a 37.78% reduction in
error rates. However, Bi-LSTM models typically require more data and training time
to reach equilibrium due to their bidirectional training approach [12]. These models
are particularly suited to handling temporal dependencies in data, which is crucial
for recognizing patterns over time. LSTM networks are adept at retaining relevant
information over extended sequences, making them highly suitable for sequential
data where long-term dependencies play a significant role. Bi-LSTM models, by
processing data in both forward and backward directions, are designed to capture a
more comprehensive understanding of temporal dependencies, potentially improving
predictive accuracy.

Despite the potential of LSTM and Bi-LSTM models, their effectiveness in earth-
quake prediction can vary based on how well they capture both positive cases (earth-
quake occurrences) and negative cases (non-occurrences). For practical applications,
the balance between sensitivity and specificity is crucial. A model that excessively
favors one over the other may either fail to provide early warnings or issue too many
false alarms, each with significant real-world implications. Consequently, finding the
right balance in model performance metrics is vital for effective earthquake prediction
systems, and this study aims to compare LSTM and Bi-LSTM models in this regard.

This paper explores the performance of LSTM and Bi-LSTM models, tuned
specifically for earthquake occurrence prediction, using seismic data from the United
States Geological Survey (USGS) for the Tokai region. The models are evaluated across
multiple metrics, including sensitivity, specificity, predictive values, and area under
the curve (AUC). This study seeks to determine which model provides a better balance
between accuracy and reliability, thereby offering insights into the applicability of
these models in real-world seismic monitoring and prediction efforts.

2. Methodology
2.1 Data Acquisition
The area studied in this paper is in the Tokai region of Japan with period covered
is from June 1975 to August 2024. The data used is sourced from USGS [13] with
latitude coordinates of 33.943 - 37.475 and longitude coordinates of 135.681 - 144.097.
The features considered are time, magnitude, and depth. From the established data
limits, the total number of data records is 11336.

2.2 Data Cleansing
Record null data removal is carried out to prevent the inclusion of empty data in the
subsequent stages. Data checks are performed to assess consistency over time. At this
stage, data is filtered with the condition that the magnitude is greater than 4.4 and
the depth is less than 100 km because the threshold magnitude is determined using
a magnitude completeness [14], while a depth of 100 km falls into the category of
shallow earthquakes that can be felt by humans. All magnitudes within the filtered
range will be labeled as 1 (earthquake occurred), while those outside this range will
be labeled as 0 (no earthquake occurred).
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Figure 1. Area Data of Tokai, Japan

2.3 Compute Seismic Parameter
In this study, all earthquake data within the specified filter range (such as based on
magnitude and depth) are sampled monthly to calculate seismic parameters. There are 8
parameters necessary calculated to analyze seismic activity [9] [15] i.e. Date Difference,
Mean Magnitude, Rate of Square Root of Seismic Energy Released (RSRSER), B-Value,
Mean Square Deviation, Magnitude Deficit, Mean Time Between Characteristic or
Typical Events (µ value), and Aperiodicity of the mean (c value).

2.3.1 Date Difference (DD)
The difference in dates between the event (with a magnitude equal to or greater than
the threshold) and the date of the initial event is defined as

t = tn – t1 (1)

The DD value can serve as a measure of foreshock frequency depending on the
threshold value chosen for magnitude [16]. A larger DD value indicates a lower
probability of upcoming seismic events, while a smaller DD value suggests a higher
probability of foreshock frequency. Date Difference can serve as a measure of fore-
shock frequency depending on the threshold value chosen for magnitude. A larger
DD value indicates a lower probability of upcoming seismic events, while a smaller T
value suggests a higher probability of foreshock frequency.

2.3.2 Mean Magnitude
The average of earthquake magnitudes on the Richter scale for the last n events can
be calculated using the formula:

M̄ =
ΣMi

n
(2)

This average, along with the DD value (which measures the frequency of fore-
shocks), becomes an important parameter for predicting the occurrence of a major
earthquake in certain regions. According to the accelerated release hypothesis and its
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modifications, the energy released from a fractured fault increases exponentially as
the time until the earthquake gets closer. This means that the observed magnitudes
of foreshocks typically increase sharply just before a major earthquake occurs. This
phenomenon reflects an acceleration pattern in energy release from the fault line,
which can serve as an early warning for an impending major earthquake.

2.3.3 Rate of Square Root of Seismic Energy Released

The rate of square root of seismic energy released over a period t
(

dE
1
2

)
is calculated

as:

dE
1
2 =

dE
1
2

t
(3)

where E
1
2 represents the square root of seismic energy E, which is derived from

the corresponding Richter magnitude using the empirical relationship:

E = 1011.8+1.5Mergs (4)

2.3.4 B-Value
The b-value represents the slope coefficient of the log frequency of earthquakes and is
derived from the Gutenberg-Richter (G-R) inverse power law.

log10N = a ± bM (5)

The values of a and b are obtained from plotting the magnitude class values against
the frequency of each class. The resulting slope becomes the value of b, and the
intersection point becomes the value of a. In general, the a-value and b-value can be
formulated as follows:

a =
Σlog10Ni + bMi

n
(6)

b =
(nΣMilog10Ni) – (ΣMiΣlog10Ni)

(ΣMi)
2 – nΣM2

i
(7)

2.3.5 Mean Square Deviation
The mean square deviation (η value) measures how closely observed earthquake data
follow the Gutenberg-Richter inverse power law, which describes the relationship
between earthquake magnitude and frequency.

η =
Σ (log10Ni – (a – bMi))

2

n – 1
(8)
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2.3.6 Magnitude Deficit
This is the residual of the maximum magnitude observed in n events and the largest
magnitude based on G-R law. This can be represented as the following equation

MD = Mmaximumobserved – Mmaximumexpected (9)

With as

Mmaximumobserved =
a
b

(10)

2.3.7 Mean Time Between Characteristic or Typical Events (µ value)
The µ value, or mean time between characteristic or typical events, represents the
average interval between significant seismic events among the last n occurrences. This
hypothesis suggests that, after a fault releases stress in a major earthquake, stress gradu-
ally builds up again until another large release occurs. Studies by [17] in the Parkfield
area found relatively constant intervals between these large, recurring earthquakes,
which are referred to as “characteristic events” due to their similar magnitudes and
periodic occurrence. For instance, earthquakes with magnitudes in a specific range
(such as 7 to 7.5) might be grouped as a characteristic magnitude.

µ =
Σ (ti characteristics)

ncharacteristics
(11)

2.3.8 Aperiodicity of the Mean (c-value)
The coefficient of variation of the mean time between characteristic events (µ), also
called the aperiodicity of the mean (c-value), measures how closely the timing of
earthquakes in a seismic region follows a regular, characteristic pattern. It is calculated
as the standard deviation of the observed times divided by µ. A high c-value indicates
a large variation from the average time between characteristic events, while a low
c-value suggests that these events occur at more regular intervals.

c =
standarddeviationobservertime

µ
(12)

2.4 Data Preprocessing
In the selected dataset, not all months have earthquake event data. At this stage, data
with Null values were removed. From the calculated seismic parameters, the dataset
initially contained 938 records monthly [9]. After removing the null values, the dataset
without null value had 582 records monthly with sample in Table 1. Once the data
was cleaned of null values, all features were normalized using Min-Max scaling to
a range of -1 to 1 with Equation 13, as the next step involves modeling with the
tanh activation function. Before proceeding to the training phase, the data was split
into 80% for training and 20% for validation and testing [9]. The splitting process
was conducted without using random methods to preserve the time series sequence.



506 Azhari Haris Al Hamdi et al.

Splitting process was performed once without cross-validation due to the small dataset
size.

x̂ = 2
x – xmin

xmax – xmin
+ 1 (13)

Table 1. Sample data after preprocessing

2.5 Modeling LSTM and Bi-LSTM
After data splitting, the cleaned data proceeded to the modeling stage. A sequence
length of 50 was chosen for this phase [9]. The modeling was implemented using the
TensorFlow Keras framework, with multiple rounds of trial and error to identify the
optimal number of layers, loss function, and optimizer. In the initial trials, 100 epochs
were run to assess the metrics used. The metrics applied at this stage included True
Positive (TP), True Negative (TN), False Negative (FN), False Positive (FP), accuracy,
and AUC. All layers used the tanh activation function, except for the final activation
layer, which used the sigmoid function, as the output represents the probability of an
earthquake occurring.

Long Short-Term Memory (LSTM) architecture addresses the limitations of
traditional recurrent neural networks (RNNs) in learning long-term dependencies due
to vanishing or exploding gradients. This is achieved by incorporating memory cells
equipped with self-recurrent connections and multiplicative input, forget, and output
gates. These gates control the flow of information, enabling the network to selectively
retain or discard information over extended sequences. By using a truncated gradient
method, LSTM ensures stable error propagation through its Constant Error Carousel
(CEC), allowing efficient learning over time lags exceeding 1,000 steps. Experiments
demonstrate the effectiveness of LSTM in solving complex temporal tasks that are
challenging for conventional RNN algorithms. The LSTM cell is equipped with three
gates: the input gate (it), forget gate (ft), and output gate (ot), which control the flow
of information. The three gates correlation aligns with Equations 14–19.



IJECBE 507

ft = σ
(

Wf . [ht–1, xt] + bf

)
(14)

it = σ (Wi · [hi–1, xi] + bi) (15)

c̃t = tanh
(
σ
(

Wf · [ht–1, xt] + bf

))
(16)

ct = ft ⊙ ct–1 + it ⊙ c̃t (17)

ot = σ (Wo · [ht–1, xt] + bo) (18)

ht = ot ⊙ tanh (ct) (19)

ht is the output list that carries the parameters produced by the LSTM to the
neural network. LSTM and Bi-LSTM models have the same configuration of cells
and gates; however, Bi-LSTM includes LSTM configurations in the hidden state for
both forward and backward directions. Bi-LSTM (Bidirectional LSTM) networks
extend LSTM by processing input sequences in both forward and backward direc-
tions. This bidirectionality captures both past and future dependencies, offering a
more comprehensive understanding of temporal patterns. In the study, Bi-LSTM
significantly improved forecasting accuracy throughout the entire month, as it utilized
information from both past and future states simultaneously [18].

This study references from [9] and [15] to simplify the model and use it as a
benchmark due to the small dataset employed. In the study by Dhurandhar et al.
[19], it is stated that simple models can outperform complex models when dealing
with small datasets. Additionally, from Wang et al. [20] highlights that small batch
sizes yield better performance compared to larger batch sizes. Figure 2 and 3 shows
the final model structure for this study. The LSTM model included 2 layers, while
the Bi-LSTM model had a single layer to observe the output sequence consistency
(100) for both LSTM and Bi-LSTM. At the final stage, training and validation were
conducted over 1000 epochs. Dropout applied in each LSTM layer and first dense
layer after flatten layer as regularization techniques. Loss function using mean squared
error [21]. The prediction results indicate the probability of an earthquake occurring
with a threshold of a magnitude greater than 4.4 and a depth less than 100 km. Table
2 shows the Applied hyperparameter employed in model.

This research utilized a Mac Studio M2 Max to run Jupyter Notebook for pre-
dicting earthquake occurrence probabilities as local system configuration. The Mac
Studio is equipped with 32 GB of RAM, a 24-core GPU, and a 12-core CPU with
a unified memory architecture. Supporting libraries used include pandas, NumPy,
scikit-learn and matplotlib.
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Figure 2. Modeling LSTM

Figure 3. Modeling Bi-LSTM

3. Result Analysis
The metrics used to evaluate the performance of the model include True Negative
(TN), False Positive (FP), False Negative (FN), True Positive (TP), Sensitivity (Sn),
Specificity (Sp), Positive Predictive Value (PPV), Negative Predictive Value (NPV),
Area Under the Curve (AUC), and Accuracy. The metric results for both models are
presented in the Table 3. Using a threshold of magnitude more than 4.4 and depth less
than 100 km, the LSTM model demonstrated superior sensitivity (0.92) compared to
Bi-LSTM (0.6), correctly identifying 46 true positives (TP) with only 4 false negatives
(FN) shows in Figure 4 (a). However, its specificity (0.2941) was relatively low, with
12 false positives (FP) and only 5 true negatives (TN). This indicates that while LSTM
effectively detects earthquake occurrences, it struggles to differentiate non-occurrence
cases.

Table 2. Applied Hyperparameter

Hyperparameter Name (value)

Dropout LSTM LSTM/Bi-LSTM Layer Dropout (20%)
Dropout Dense Dense Layer Dropout (30%)
Learning Rate Adam (1e-3)
Loss function Mean Squared Error

Activation Function tanh and sigmoid
Epoch 1000

Batch size 64
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Conversely, the Bi-LSTM model exhibited greater specificity (0.6471), correctly
classifying 11 true negatives and reducing the false positives to 6. However, its
sensitivity dropped to 0.52, with only 26 true positives and 24 false negatives shows
in Figure 4 (b). This trade-off highlights that Bi-LSTM is better at filtering out
non-occurrences but less effective at capturing earthquake events, which could limit
its applicability in scenarios requiring high sensitivity, such as early warning systems.

In terms of predictive values, both models demonstrated strengths in different areas.
The LSTM model achieved a Positive Predictive Value (PPV) of 0.7931, indicating
high reliability in its positive predictions, while its Negative Predictive Value (NPV)
was moderate at 0.5556. The Bi-LSTM model showed a slightly higher PPV of
0.8125, suggesting its predictions for occurrences were slightly more accurate, but its
NPV was considerably lower at 0.3143. This contrast underlines the differences in
how each model prioritizes sensitivity versus specificity.

Table 3. LSTM and Bi-LSTM classification metric result

The Area Under the Curve (AUC) metric further reflects the overall discriminative
ability of the models. The LSTM achieved an AUC of 0.6641, slightly outperforming
Bi-LSTM, which had an AUC of 0.6694. These AUC values indicate moderate
performance for both models, with LSTM leaning towards better sensitivity and
Bi-LSTM achieving a stronger balance with higher specificity. While LSTM may be
more suitable for applications focused on capturing occurrences, Bi-LSTM’s higher
specificity makes it preferable in scenarios where reducing false positives is crucial.
Future work could focus on optimizing both architectures to improve their trade-offs,
such as incorporating attention mechanisms or refining hyperparameters for better
balance in sensitivity and specificity.

As a comparison for these results, several studies with similar classification systems
have been conducted by previous papers. From Vardaan et al. [22], using 2 LSTM
layers with 40 neurons and the Adagrad optimizer achieved an accuracy of 58.67%.
In Aslam et al. [23], a proposed ANN model with 2 connected layers, 50 neurons, a
sigmoid activation function at the output, and RMSprop as the optimizer achieved
an accuracy of 61.34%. Number of LSTM layers used matches this study, but the
difference lies in the use of dense layers after flattening. Wang et al. [24] employed 1
LSTM layer and 2 dense layers with 256 and 64 neurons, respectively, achieving an
accuracy of 54.67%. These results are still far from the accuracy achieved by both the
LSTM and Bi-LSTM models in this study. Banna et al. [9], the model used 1 LSTM
layer, 2 Bi-LSTM layers, 1 multiplicative attention layer, and 3 dense layers, resulting
in an accuracy of 74% and an AUC of 71%. These results are close to the performance
of the LSTM model in this paper. This study used the same preprocessing techniques
[9] [15] and dataset sources from USGS [13]but applied them to a different location.
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Figure 4. Confusion Metric result from model using (a) LSTM (b) Bi-LSTM

4. Conclusion
This study explored the performance of LSTM and Bi-LSTM models in predicting
earthquake occurrences, focusing on their strengths and trade-offs. The results
demonstrate that a simple model architecture produces better performance compared
to a more complex architecture. However, this strength comes at the cost of a higher
false positive rate, which may reduce reliability in distinguishing non-occurrence
events. In contrast, Bi-LSTM demonstrated better balance by reducing false positives,
but it struggled to capture all occurrences, potentially limiting its effectiveness in
scenarios requiring high sensitivity.

In future works, we will use ensemble and attention models. This has the potential
to be applied in real-world cases, but further tuning is required.The results highlighted
that LSTM excels in detecting occurrences, making it highly suitable for applications
where identifying potential events is critical, such as early warning systems. These
findings emphasize the complementary nature of LSTM and Bi-LSTM models, with
each offering distinct advantages depending on the application. LSTM’s capability
to prioritize event detection makes it ideal for risk mitigation systems, while Bi-
LSTM’s balanced performance is better suited for applications requiring precision and
fewer false alarms. Future work should aim to refine these models through advanced
techniques such as attention mechanisms and hybrid architectures, improving their
ability to handle the complexities of earthquake prediction while maintaining robust
and reliable performance across different use cases.
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