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Abstract
Integrating Demand Response (DR) programs into the Unit Commitment (UC) problem is
a promising method to enhance the efficiency and reliability of power systems. This work
introduces a new formulation that incorporates price elasticity into the UC problem using
a relaxed optimization approach. Our objective is to maximize overall system performance
by reducing generation costs and maximizing the utility function while accounting for
how demand changes in response to electricity prices, i.e., price elasticity-based DR.
The proposed model employs Mixed-Integer Linear Programming (MILP) techniques
to efficiently solve the UC problem, using a linear function to model price elasticity-
based DR. Our approach has demonstrated its effectiveness in achieving substantial cost
reductions and improved load management, as shown through numerical simulations.
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Nomenclature
dt initial system demand level in hour
d̂t final demand level in hour
dcrt quantity of demand curtailed in hour t
dPtt,t′ demand quantity shifted from hour t to t′

dPtt,t′ demand quantity shifted from hour t to t

dmint minimum bounds for d̂t
dmaxt maximum bounds for d̂t
Pmint,g minimum operating limit of the generator
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Pmaxt,g maximum operating limit of the generator
MRUn maximum ramp-up limit, unit n MW
MRDn maximum ramp-down limit, unit n MW
MUTg minimum up time for unit g hour t
MDTg minimum downtime for unit g hour t
Ug,t binary state variable for unit g hour t
Sg,t start-up variable for unit g hour t
hg,t shut-down variable for unit g hour t
F social welfare function
Cg
(
Pt,g
)

fuel cost
w designed parameter
γt,t′ upper bound of model error
σ elasticity coefficient
ag, bg, cg cost function coefficient of unit g
εt,t the price elasticity
εt,t′ the price elasticity
Ut
(
d̂t
)

utility function

1. Introduction
Electricity is a significant energy source relied upon by society for various daily
activities. Currently, there is a shift in consumer demand for electricity. Consumers
not only want to purchase kilowatt-hours (kWh) from electric companies, but they
also want to receive better services. Over time, electric companies will transition
to a condition where electricity demand must be adjusted to the capacity of the
electricity supply. Efforts are currently underway to regulate the consumption of
electric energy by users to align with conditions on the production side, commonly
known as Demand-Side Management (DSM) [1].

DSM helps efficiently utilize generation capacities and minimizes the underutiliza-
tion of generation resources in the system. An important aspect of DSM is reducing
peak load demand and ensuring a sustainable power supply to consumers at reduced
operational costs. This is possible either by reducing load demand or by shifting the
load [2]. Load shifting is one of effective DR program, as the load independent of
time can be transferred to off-peak hours [3].

Electricity companies develop operational policies for the power system to over-
come energy distribution problems for users. These plans, including short-term
scheduling strategies, outline operational guidelines for the system over a given time-
frame, ensuring effective and efficient energy provision. One of the short-term
operational plans in the power system is unit commitment operation scheduling. Unit
Commitment is vital to power system functioning and electrical network planning.
This procedure involves identifying the optimal operation of generating units during
specified periods to meet power demand at the lowest possible cost while ensuring
system reliability.

The most discussed techniques for solving the unit commitment problem are
priority-list schemes, Dynamic Programming (DP), and MILP. Priority-list schemes
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are the most popular. DP algorithms are the only ones approaching an optimum
solution for large systems. MILP algorithms are just beginning to be researched and
are not widely used for large-system problems [4]. UC admits a natural formulation
in MILP, as demonstrated in [5] long before it was practical.

MILP has been widely used to address UC problems due to significant advances in
widely available MILP solvers that use branch-and-cut techniques. Due to advances in
computer hardware and algorithmic efficiency, the time required to solve a MILP has
decreased by 100 million-fold in the last two decades [6]. Researchers have recently
suggested employing a MILP formulation approximated by UC [7],[8],[9]. This
formulation utilizes highly efficient, versatile MILP solvers to rapidly calculate high-
quality answers, particularly for small to mediumsized problems. Nevertheless, larger
cases may still require specialist procedures.

Recently, due to high electricity demand, integration of renewable energy sources,
and changes in the dynamics of energy consumption, the power system has faced
significant challenges. Among the increasing interest in an emerging strategy to
modify energy consumption through consumer engagement is the adoption of de-
mand response. Price elasticity is important in optimizing unit commitment when
considering demand response. Price elasticity measures the sensitivity of changes
in demand that occur in response to price changes. Understanding price elasticity
can improve load management and reduce operating costs by utilizing the demand
flexibility of the system operators.

Price elasticity of demand was used to model demand response, embedding re-
sponsiveness of demand in the iterative market clearing process [10]. Reference [11]
presents an economic demand response model that embeds both price and incentive-
responsive loads. The model utilizes flexible demand elasticity as a measure of market
flexibility.

However, the research cited earlier [12],[11],[13] focuses on price-based elasticity,
even in augmented demand response models used for analysis. This amounts to a failure
to consider the effect of incentives or penalties that would impact elasticity. However,
incorporating price elasticity-based demand response into the unit commitment
process is complex. Accurately representing the connection between pricing and
demand, as well as managing the intricacies of the interplay between generating units
and demand response, necessitates the use of appropriate mathematical formulations.
Relaxation formulations are one of the very effective ways to tackle such problems by
simplifying the model and maintaining accuracy.

The proposed work focuses on designing and testing an approach to unit com-
mitment that incorporates price elasticity-based demand response via relaxation for-
mulations. This approach is expected to increase operations’ efficiency and flexibility
in handling the power system with fluctuating demands and energy price changes.
The proposed approach aims to reduce the demand for electricity during peak times
by giving priority or shifting the load. This way, consumers will reduce non-critical
or shiftable load utilization during peak demand periods, lessening energy demand.
This involves load reduction or load redistribution to enhance net usefulness on the
consumer side while reducing the cost of generation and maximizing social welfare.
This strategy considers the respective generating unit constraints, which include the
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minimum and maximum capacity, the maximum and minimum ramp rates, and the
minimum uptime and downtime.

The structure of this paper is outlined as follows. Section 2 presents the fundamen-
tals of the UC and DR Model. In Section 3, we introduce the idea and fundamental
unit commitment model considering price elasticity-based demand response and
simplify the difficulties of problems that common computational constraints could
solve. In Section 4, we tested our proposed model with daily load data (24 hours).
Finally, we summarize our findings and propose avenues for future research in Section
5.

2. Preliminaries
This section covers the preliminary foundations and background necessary to under-
stand the basic structure of unit commitment and the demand response model. It
provides the foundation for the approaches and models used in later sections.

2.1 Unit Commitment
UC is the short-term scheduling of daily or weekly electricity generation from a
thermal unit to meet current and anticipated electricity demand most economically
by scheduling the unit on/off for the best operating conditions of the power plant
while meeting technical constraints. The scheduling used by UC requires long-
term differences of several hours to days, considering physical constraints such as
minimum up-down time and maximum and minimum generation limits [14]. The
main motivation for UC operation is to minimize electricity generation costs during
the same planning period. Let Pt,g be the generation of generator g at hour t; then,
UC is formulated as follows:

min
P

T∑
t=1

G∑
g=1

Cg(Pt,g),

subject to system and unit constraints where G is the number of generators and T is
the period. The detailed mathematical formulation for the objective function and the
constraints in this paper are presented next.

Fuel Cost
The fuel cost function of a thermal generator is given in quadratic form as follows:

Cg
(
Pt,g
)

= ag + bgPt,g + Cg
(
Pt,g
)2 . (1)

System Constraints
The problem includes the supply-demand balance equation, i.e.,

G∑
g=1

Pt,g = dt. (2)
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Generation Limit Constraints
In practice, the generation units have limited fuel or are required to burn a specific
amount of fuel in a given time. This can be written as

Pmint,g ug,t ≤ Pt,g ≤ Pmaxt,g ug,t. (3)

Minimum Up-Down Time Constraints
Let ug,t be the binary state variable, sg,t be the start-up variable, and hg,t be the shut-
down variable for unit g, hour t. Then, the restrictions can be formulated as follows
[15]:

t∑
i=i–MUTg+1

sg,i ≤ ug,t, ∀g, ∀t ∈
[
MUTg + 1,T

]
, (4)

t∑
i=i–MDTg+1

hg,i ≤ 1 – ug,t, ∀g, ∀t ∈
[
MDTg + 1,T

]
, (5)

where MUTg and MDTg are the minimum on and off time, respectively.

Ramp Rate Constraints
The ramp of generation output is limited, i.e.,

–MRUn ≤ Pt,g – Pt+1,g ≤ MRDn, (6)

where MRUn and MRDn are the maximum ramp-up and ramp-down limits, respec-
tively.

2.2 Demand Response Model
DR gives customers a chance to actively contribute to the electrical grid by modifying
their usage patterns in response to the price of electricity or other financial incentives
[16],[17]. The most common changes that customers can make are curtailment or
shifting their electricity consumption at times when it is valuable to the electricity
system or to the customers themselves.

Load Curtailment
Curtailment has been employed by the system’s operator to ensure the proper opera-
tion of power systems. By reducing a portion of the load, catastrophic events such as
complete blackouts can be avoided. Then, the total demand d̂t after the amount of
energy to be curtailed dcrt can be written as follows:

d̂t = dt – dcrt , (7)

d̂t ≥ 0, dcrt ≥ 0, (8)

where dt is the base load.
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Load Shifting
Load shifting or deferral is a widely used method in demand response, allowing con-
sumption to be delayed or anticipated. The main limitations are technical constraints,
process requirements, and the availability of unused plant capacity. From a system
viewpoint, load shifting mimics the functionality of conventional storage units by
reducing demand when electricity prices are high and increasing it when prices are
low. The primary difference between DR shifting and storage is that DR storage, like
that of electric vehicles (EVs), must always meet a specific demand, ensuring constant
consumption. Let dt,t′ be the amount of demand that is shifted from hour t to t′ ,
where t′ ̸= t, then the amount of supplied demand due to load shifting is:

d̂t = dt –
∑
t′ ̸=t

dt,t′ +
∑
t′ ̸=t

dt′,t. (9)

Demand Response under Time-of-Use Pricing
In order to promote benefits for both generators and customers from economic oper-
ations, DR under time of use (TOU) pricing is considered. Demand response under
TOU pricing is a mutually beneficial approach that supports economic operations for
generators and cost savings for customers. By aligning energy consumption patterns
with periods of lower demand and cost, TOU pricing enhances grid stability, reduces
operational costs, and contributes to environmental sustainability. A core principle of
this program is that the total load increased and the total load decreased over the entire
time period must be balanced and equal. The limitation can be written as follows [18]:

T∑
t=1

d̂t =
T∑
t=1

dt, (10)

dmint ≤ d̂t ≤ dmaxt ,∀t. (11)

The developed model will ensure total energy consumption over the T-hour period.
It achieves this by allocating the flexible portion of the demand to times when prices
are lowest, all while adhering to demand capacity constraints. The value of (11)
indicates the upper and lower bounds of DR. Based on the method adopted from
[19], the maximum and minimum demand values are defined as dmaxt = (1 + σ)dt and
dmint = (1 – σ)dt, where σ is an elasticity coefficient selected within the interval [0.02,
0.05].

2.3 DR with Cross Price Elasticity
In this paper, we concentrate on a DR program where the demand side reduces or
shifts a portion of its electricity usage across different hours in response to a price
signal. For example, if the price of electricity during peak hours increases by 20.

The price elasticity in the hour t corresponding to the electricity consumption of t
itself and is denoted by εt,t, where t ∈ {1, . . . ,T}. Furthermore, cross-price elasticity
corresponding to the demand in hour t and the price in hour t′ is represented by εt,t′
where t ∈ {1, . . . ,T} and t′ ∈ {1, . . . ,T} \ t.
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Consider E as the T × T matrix that includes the price elasticities for different
hours. The diagonal elements εt,t indicate the price elasticity within the same hour,
while the off-diagonal elements εt,t indicate the cross-price elasticity between different
hours t and t′ where t ̸= t′. To define the utility functions and constraints on the
demand side for each hour t (assuming T = 24 hours), we establish the relationship
between the elements of E and the price-responsive demand variable d̂t .

The resulting amount of demand after the DR d̂t can be defined as a function of
the price vector P = [P1, . . . , PT] † (where † denotes the transpose), i.e., d̂t(P), where

P = P0(1T – E–11T ) + P0E–1

(
d̂1
d1

, . . . ,
d̂T
dT

)†

.

Here, E–1 is the inverse of the matrix E. Each element of P represents the inverse
demand function or the price for each corresponding hour. See [20] for details.

Let the curtailed demand dcrt in hour t be a response to the price in hour t (denoted
by Pt). Furthermore, dptt,t′ , t

′ ̸= t , is the decision variable to represent the demand
quantity shifted from hour t to t′ in response to the price in hour t, and d dpt′t,t′ (where
t′ , t) is the new decision variable to represent the demand quantity shifted from hour
t to t′ in response to the price in hour t′ . One can observe that

dPt′t,t′ = –dPt′t′,t , ∀t, t′ ̸= t. (12)

It is essential to understand that demand curtailment within any specific hour t is
directly influenced only by the price change in that same hour. In contrast, demand
shifting between two different hours t and t′ is driven by the price changes occurring
in both hours t and t′ . This means that while curtailment reacts to immediate price
fluctuations, shifting considers the relative price differences between the two hours.
The demand side, considering curtailment and shifting based on cross-elasticity, is
given as follows [20]:

d̂t = dt – dcrt –
∑
t′ ̸=t

dPtt,t′ –
∑
t′ ̸=t

dPt
′

t,t′∀t, (13)

dPtt,t′ +
εt,tdt′
εt,tdt

dcrt +
∑
t′′ ̸=t

dPtt,t′

 = 0 ∀t, ∀t′ ̸= t. (14)

It is important to mention that dPtt,t′ might have positive or negative values at different
hours. A positive value indicates that the load during that hour has been redistributed
to other hours, whereas a negative value indicates that the load from other hours has
been moved to that hour.

3. Unit Commitment with Demand Response Models
The DR models are predominantly formulated to correctly model the optimal planning
and operation of power and energy systems (including markets). In this section, the
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aggregated UC problem considering the DR in the form is discussed. First, social
welfare of the demand response program is discussed. Social welfare is defined as
the aggregate utility of the demand side’s overall hours minus the total penalties
incurred by the demand side and the total generation costs of the supply side. Then,
the proposed optimization problem is presented.

3.1 Social Welfare in DR
In the context of demand response, social welfare refers to the overall well-being
and economic efficiency achieved by optimizing the electricity consumption and
production in response to price signals. The social welfare function in this scenario
evaluates the aggregate utility of electricity consumption adjusted for the costs and
benefits associated with demand response activities.

A social welfare function assigns a ranking to different social states, indicating
the desirability of each state based on the well-being of individuals in society. In the
context of demand response, this function considers the utility gained by consumers
from electricity usage and the costs incurred by producers. The goal is to find an
optimal balance that maximizes the overall utility while minimizing the costs. The
general form of the social welfare function can be expressed as:

F =
T∑
t=1

Ut
(
d̂t
)

–
G∑
g=1

Cg
(
Pt,g
) . (15)

The utility function Ut
(
d̂t
)

reflects the satisfaction or benefit that consumers derive
from consuming electricity. This can be modeled as a concave function, indicating
that the marginal utility of consumption decreases as consumption increases:

Ut
(
d̂t
)

= Mt d̂t, (16)

where Mt ≥ 0 is parameters that define the utility function.

3.2 Proposed Optimization Problem
This objective is subject to the constraints imposed by both the demand and supply
sides. In other words, the problem can be formulated as follows:

max
P,d̂,γ

F – w
T∑
t=1

T∑
t′ ̸=t

γt,t′ (17)

subject to

dPtt,t′ +
εt,t′dt′
εt,tdt

dcrt +
∑
t′′ ̸=t

dPtt,t′′

 ≤ γt,t′ , ∀t, t ̸= t (18)

T∑
t=1

d̂t =
T∑
t=1

dt –
T∑
t=1

dcrt (19)
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γt,t′ ≥ 0, ∀t, t ̸= t, (1) – (6) , (8) , (11) – (13) ,

where F is defined in (15) and w > 0 is a design parameter. The objective function
is formulated such that it minimizes the social welfare F while trying to minimize
the total wγt,t′ for all t and t ̸= t. Note that the γt,t′ can be seen as an upper bound of
model error of equation (14). In other words, we would like to put the DR-based price
elasticity model into consideration. However, instead of using (14) as a constraint, we
use its relaxed problem to increase the feasibility region of the proposed optimization
problem. Furthermore, the problem incorporates the constraints from the UC, i.e., (1)-
(6), and the DR-program (11)-(13). The constraint (19) is incorporated to consider (10)
when curtailed demand is considered. In the next section, the proposed optimization
is verified using numerical simulations.
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Figure 1. Parameter Mt for utility function (16)
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Figure 2. Comparison of base demand and final demand (after DR) for Case 1 and 2
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4. Numerical Simulations
This section conducts numerical simulations using the system parameter data from [4]
to demonstrate the efficiency of the proposed UC with DR program. To be precise,
we aim to understand of how demand response can provide flexibility to the grid
and its potential to reduce production costs and increase overall system efficiency.
The proposed optimization problem is solved using parameter design w = 10. The
simulations were performed on a PC with AMD Dual Core A9-9420 3.6 GHz CPU
and 4 GB memory. All algorithms are implemented on MATLAB and programmed
using YALMIP environment [21]. The solver used is GUROBI 11.0 [22], with the
optimality gap is set to be 0.1.

4.1 The Impact of The Utility Function
This study assessed social welfare using two different parameters for the utility function
Mt, as shown in Figure 1. We identified two scenarios: Case 1 and Case 2. In Case 1,
Mt is zero for all t, indicating that the function does not aim to maximize electricity
consumption. Conversely, in Case 2, Mt is increased during two specific periods. The
resulting final demand is depicted in Figure 2. In Case 1, it is evident that during
peak load times at t = 10 and t = 20, the final demand is lower than the initial demand,
reflecting reduced electricity consumption during these periods. In contrast, in Case
2, the final demand at t = 10 and t = 20 closely matches the initial demand, as the
proposed method also seeks to maximize electricity consumption by customers.
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Figure 3. Shifted demand (MW) for Case 1 and 2

Additionally, during other periods, the final demand is a result of both shifted
and curtailed demand, as shown in Figures 3 and 4. Despite M10 ̸= 0 and M20 ̸= 0
in Case 2, the shifted and curtailed demand during these periods are not zero. This
is because the proposed method uses the penalty function wγt,t′ to ensure that the
resulting demand reflects the customers’ behavior in response to electricity prices.
Table 1, presents the sum of γt,t′ over all time periods T. This sum represents the error
associated with the proposed method under a price elasticity based DR model. This
shows that, despite using a relaxed version of the problem, the resulting error is still
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Figure 4. Curtailed demand (MW) for Case 1 and 2

maintained at a small level, indicating the effectiveness and precision of the proposed
method in modeling demand response while adhering to price elasticity principles.

4.2 The Impact of The Demand Response Model on Unit Commitment
Demand Response could be defined as a type of negative generation in the unit
commitment model. Hence, this section aims to assess the effects that demand response
may have on system capacity. To this end, the proposed UC with DR problem is
solved using parameter Mt shown in Figure 5.

Table 1. Total value of upper bound γt,t′ using different utility function.

Case Total γt,t′

Case 1 1.33926

Case 2 1.9.8448
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Figure 5. Parameter Mt for utility function (16)
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Figure 6 shows the difference between the initial request and the final request
which means that the demand response program has affected energy consumption.
This change can be caused by a decrease in consumption by consumers during peak
demand times or from a shift of consumption to another period. Figure 7 compares
the power generated with and without DR program for 24 hours. Focusing on the
period from 1 a.m. to 6 a.m. and then 2 p.m. to 5 p.m., the total energy produced with
DR is higher than the power produced without DR because the constant economic
value given is sufficient to motivate consumers to transfer their energy consumption
to the clock so it requires power to be generated.
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Figure 6. Comparison of initial and final demand with DR program
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Figure 7. Total generated power when UC is solved with and without DR program

In addition, as shown in Table 2, implementing demand response in the power
system has reduced the production costs. The impact DR has on a reduction in
operational costs is effected by realizing efficient demand adjustments that directly
reduce the peak load on the system and, subsequently, the expensive burden of
additional generation on the system. This indicates that DR is a good measure to
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Table 2. Total generation cost with and without demand response (DR)

Case Generation Cost ($/MW)

With DR 2.5925e+05

Without DR 2.6440e+05

increase operational efficiency and, in turn, decrease the costs associated with energy
management. These forms of benefits are important in achieving better energy
management, with more economically planned power generation capacity, which is
going to ensure a more stable and sustainable electricity supply.

5. Conclusion
This paper develops an optimization approach for unit commitment using a relaxed
formulation to incorporate price elasticity-based demand response. The objective
is to maximize social welfare, defined as the utility function minus the generation
cost. Incorporating demand response programs in unit commitment can significantly
reduce peak load and better manage energy consumption during non-peak periods.
Future research should explore using price elasticity-driven demand response strategies
to further enhance the integration of renewable energy into the electricity grid.
Developing adaptable models of price elasticity is crucial for accurately capturing
the diverse ways consumers react to varying situations and time periods, which may
improve the flexibility and efficiency of the power system in the future.
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