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Abstract
This study aims to develop predictive models for the heat rate of coal-fired steam power
plants (CFSPPs) in Indonesia using various machine learning techniques and to identify
factors influencing greenhouse gas emissions, specifically CO2. Techniques used include
Linear Regression, Lasso Regression, Polynomial Regression, Ridge Regression, Support
Vector Regression, Random Forest Regression, Gradient Boosting Regression, Elastic Net
Regression, AdaBoost Regression, Neural Network Regression, Decision Tree Regression,
and Extra Trees Regression. The data consists of 468 performance test results from
CFSPPs, covering operational parameters such as boiler type, ambient temperature, flue
gas temperature, and unburned carbon. The correct values should be: "Analysis shows
that the Extra Trees Regression model provides the best performance with an R-squared
value of 0.946, MAE of 136.884, MSE of 35053.258, and RMSE of 187.225 for heat
rate modeling, and an R-squared value of 0.992, MAE of 20.143, MSE of 1494.351,
and RMSE of 38.657 for CO2 emissions modeling, demonstrating high accuracy and
good generalization. Significant factors influencing the heat rate include Gross Power
Output (GPO), Net Power Output (NPO), load percentage, boiler type, coal HHV, coal
consumption, and operational duration. This model is implemented using the Postman
application for realtime heat rate and CO2 emissions prediction, facilitating integration
with CFSPP’s operational systems. The research results indicate that the application of
machine learning can improve energy efficiency and reduce CO2 emissions, supporting
Indonesia’s Nationally Determined Contribution (NDC) targets. This study provides new
insights into the application of machine learning in the power generation industry and
offers recommendations for further implementation and research.
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1. Introduction
Coal-fired steam power plants (CFSPPs) are essential in meeting Indonesia’s ever-
increasing energy demands. Powerplants contribute significantly to the national
power generation capacity, with more than 50% of electricity generated from these
fossil-fuel-based plants [1] [2]. However, the heavy reliance on fossil fuels leads
to significant greenhouse gas emissions, particularly carbon dioxide (CO2). These
emissions have detrimental environmental impacts, contributing to global climate
change and air pollution [3] [4]. Therefore, there is an urgent need to enhance the
operational efficiency of powerplant’s to mitigate their environmental impact [5].

Heat rate is a key parameter in measuring the efficiency of power plants. It
indicates the amount of fuel energy required to produce one unit of electricity. A
lower heat rate signifies higher efficiency, meaning less fuel is needed to generate
the same amount of electricity [6] [7]. Thus, optimizing the heat rate can result in
significant fuel savings and reduced CO2 emissions. Efforts to improve this efficiency
are crucial to minimizing the environmental impact of CFSPP’s [7].

Machine learning technology offers innovative solutions to tackle these challenges
[2]. With the ability to analyze vast amounts of operational data, machine learning
can identify patterns and trends that traditional methods might overlook [8]. Ma-
chine learning models can be used to predict heat rate and CO2 emissions with high
accuracy, enabling better decision-making and effective optimization strategies [9].
By leveraging historical and real-time operational data, these models can provide
actionable recommendations to enhance operational efficiency and reduce greenhouse
gas emissions [10].

Indonesia has committed to reducing greenhouse gas emissions in accordance with
the Paris Agreement. However, data from the Ministry of Environment and Forestry
indicates that emissions from the energy sector, particularly CFSPPs, remain a major
contributor [1] [11]. To achieve the Nationally Determined Contribution (NDC)
targets, concrete steps are needed to improve the operational efficiency of CFSPP’s
[1] [3]. This research aims to develop predictive models using machine learning
techniques that can identify key factors affecting heat rate and CO2 emissions and
propose effective solutions for improvement [10] [11].

The study focuses on developing predictive models for heat rate and CO2 emissions
using performance test data from CFSPPs conducted by companies that perform unit
performance testing [10]. The data includes various testing parameters such as Gross
Power Output (GPO) and Net Power Output (NPO), load percentage, boiler type,
coal HHV, coal consumption, and operational duration [12] [13]. Consequently, this
research is expected to make a significant contribution to enhancing energy efficiency,
as indicated by the heat rate values, and reducing the environmental impact of CFSPP’s
operations, particularly for CO2 emission parameters [6] [2]. The findings of this
study are also anticipated to provide a basis for the development of further policies and
strategies in sustainable and environmentally friendly energy management [1] [14].
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2. Plant Operations and Machine Learning Modeling)
2.1 CFSPPs Operational Process
CFSPPs begins with heating water in the boiler to generate main steam. Initially,
feedwater is fed into the condenser and pumped by the condensate pump through
the LP heater to the deaerator to remove oxygen. Next, this water is pumped by the
boiler feed pump into the economizer. The water flows through pipes and is heated in
the boiler tubes. Fossil fuels such as coal, oil, or natural gas are burned in the boiler to
produce heat. This combustion process involves a chemical reaction between the fuel
and oxygen from the air, producing heat, exhaust gases (including CO2, NO×, and
SO2), and ash [15]. Efficient combustion is crucial to maximize the energy obtained
from the fuel and minimize air pollution [16].

The heat generated from fuel combustion is used to heat the water in the boiler,
producing high-pressure, high-temperature steam. This steam is then collected in the
steam drum and further heated in the superheater to become high-pressure, dry steam.
The high-pressure steam enters the turbine and rotates the turbine blades [7]. The
quality of the produced steam, including its pressure and temperature, is critical for
turbine efficiency. The thermal energy from the steam is converted into mechanical
energy used to spin the turbine rotor. The turbine consists of several stages, including
the high-pressure (HP) turbine, intermediate-pressure (IP) turbine, and low-pressure
(LP) turbine. Each stage is designed to optimize the utilization of steam energy at
various pressure levels.

The rotation of the turbine shaft drives the generator shaft, which is connected via
a coupling. The electrical generator spun by the turbine produces electrical energy.
The generator operates on the principle of electromagnetic induction, where the
magnetic field generated by the rotating rotor cuts through the wire windings on
the stator, generating an electric current. This electrical energy is then distributed
through the distribution network for use by consumers. After passing through the
turbine, the steam, which has lost most of its energy, is condensed back into water
in the condenser. This condensate water is then pumped back along with additional
make-up water to the boiler for the next cycle. An efficient condensation system is
essential to reduce heat loss and ensure the continuous circulation of water within the
system [13] [17].

2.2 Powerplant performance indicator
2.2.1 Gross Power Output (GPO) and Net Power Output (NPO)
Gross Power Output is the total amount of power produced by the power plant,
while Net Power Output is the power available for distribution after accounting for
the plant’s internal consumption. High values of GPO and NPO are indicative of a
well-performing power plant [6].
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2.2.2 Heat Rate:
Heat rate is a measure of the thermal efficiency of a power plant, indicating the amount
of input energy required to produce one unit of output energy. The lower the heat
rate value, the higher the efficiency of the power plant [18]. The formula for heat
rate is:

Heatrate =
Qin
Qout

(1)

2.2.3 Boiler efficiency
Boiler efficiency measures how effectively the boiler converts fuel energy into steam
energy. High boiler efficiency indicates that the boiler is operating well with minimal
energy lost as waste heat [16]. Boiler efficiency can be expressed as:

ηboiler =
Qboiler output

Qfuel
(2)

2.2.4 Turbine efficiency
Turbine efficiency measures how effectively the turbine converts steam energy into
mechanical energy. An efficient turbine generates more electrical energy from the
same amount of steam [18]. Turbine efficiency can be expressed as:

ηturbine =
Qmechanical

Qsteam
x100% (3)

2.2.5 Availability Factor:
The availability factor is the percentage of time the plant is available for full operation.
A plant with a high availability factor has longer operational hours and less downtime
[6]. The availability factor can be expressed as:

AF =
Toperation

T
x100% (4)

2.2.6 CO2 Emissions per Unit Energy Output
This indicator measures the environmental impact of CFSPPs operations. CO2
emissions are the primary greenhouse gas produced from the combustion of fossil
fuels, and this emission rate is a critical indicator for assessing the environmental impact
of the power plant. These performance indicators are essential for understanding
and optimizing the operation of coal-fired power plants. By closely monitoring and
improving these indicators, power plant operators can enhance efficiency, reduce
fuel consumption, and minimize greenhouse gas emissions, contributing to more
sustainable and environmentally friendly energy production.
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2.3 Relationship Between Energy Efficiency and Greenhouse Gas Emissions
Energy efficiency and greenhouse gas emissions have a close relationship [15]. Higher
energy efficiency leads to lower fuel consumption, which means reduced greenhouse
gas emissions. For instance, improving combustion efficiency in the boiler can decrease
the amount of fuel required to produce the same amount of energy, thus reducing
CO2 emissions. The CO2 emissions are calculated using the formula [4]:

ECO2 = DAxFE (5)

where: ECO2 : Total CO2 emissions (tons CO2) DA : Activity Data (TJ) FE :
Emission Factor (tons/TJ) The activity data represents the consumption data per type
of fuel that has been converted to energy units. The formula for converting fuel
consumption data from mass units (tons) to energy units (TJ) is as follows:

DABB = FBBxNCVx10–3 (6)

where: DABB : Coal Activity Data (TJ) FBB : Annual coal consumption (tons)
NCV : Net calorific value of coal (TJ/Gg), the default national NCV values for coal

2.4 Machine Learning Techniques in Heat Rate Modeling
Machine learning is a branch of artificial intelligence that enables systems to learn
from data and make predictions or decisions without being explicitly programmed
[19] [20] [21]. In the context of heat rate prediction for coal-fired steam power plants
(CFSPP’s), machine learning techniques can be used to analyze operational data and
identify complex patterns, which can help optimize energy efficiency and reduce
greenhouse gas emissions.

Here are some common machine learning techniques used in heat rate prediction
[9] [21]:

1. Linear regression is a statistical technique used to model the relationship between
a dependent variable (y) and one or more independent variables (x). In the context
of heat rate prediction, linear regression can be used to predict the heat rate based
on variables such as plant load, steam pressure, and temperature. The formula for
linear regression is:

y = β0 + β1x + ε (7)

Where y is dependent variable (heat rate), x is independent variable (e.g., fuel
consumption), β0 is intercept, β1 is regression coefficient and ε is error term.

2. Polynomial regression is a statistical method used to model the relationship between
the dependent variable and the independent variables as a polynomial of a certain
degree. The formula for polynomial regression is:

y = β0 + β1x + β2x2 + · · · + βnxn + ε (8)

where x1, x2, · · · , xn are the independent variables.
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3. Ridge regression is a regression technique used to analyze data that has multi-
collinearity (high correlation between independent variables). The formula for
ridge regression is:

minimize =

 n∑
i=1

y1 – β0 –
p∑

j=1
βjxij

2

+ λ

p∑
j=1

β2
j

 (9)

where β is the regularization parameter that determines the extent of the penalty
applied to the regression coefficients.

4. Random Forest Regression is an ensemble learning technique used to improve
prediction accuracy and reduce overfitting by combining multiple decision trees.
It constructs a large number of decision trees during training and outputs the
mean prediction (regression) of the individual trees. The formula for Random
Forest Regression is:

ŷ(x) =
1
N

N∑
i=1

hi(x) (10)

where ŷ is the final prediction, and hi(x) is the prediction from the i -th tree for
sample x.

5. Support Vector Machine (SVM) is a machine learning algorithm used for classifi-
cation and regression tasks. The formula for SVM regression is:

minw,b,ξ =

(
1
2 |0w| 02 + C

n∑
i=1

ξ1

)
(11)

where w is the vector of coefficients, b is the intercept, ξ is the error variable, and
C is the regularization parameter.

6. Gradient Boosting Regression is part of the boosting family of algorithms. Boost-
ing is an ensemble technique that aims to improve model accuracy by combining
several weak learners into a strong learner. The formula for gradient boosting
regression is:

ŷ =
M∑

m=1
ymhm(x) (12)

where ŷ is the final prediction, M is the total number of base models, hm(x) is the
mmmth base model, and γm is the weight or coefficient of the m -th model.

7. Elastic Net Regression is a linear regression technique that combines L1 (Lasso)
and L2 (Ridge) regularization to address some of the limitations of both methods.
The formula for elastic net regression is:

minβ

(
1
2n

n∑
i=1

(yi – Xiβ)2 + λ1 |0β| 01 + λ2 |0β| 02
2

)
(13)



460 Ariandiky Eko Setyawan et al.

where yi is the target value, Xi is the feature vector, β is the vector of coefficients,
|0β| 01 is the L1 norm of the coefficients (Lasso penalty), |0β| 02

2 is the L2 norm of
the coefficients (Ridge penalty), and λ1 and λ2 are the regularization parameters
controlling the strength of the L1 and L2 penalties.

8. AdaBoost Regression is an ensemble method used to improve the accuracy of base
regression models. The final model is a combination of all the base models:

ŷ =
M∑

m=1
αmhm(x) (14)

where ŷ is the final prediction, M is the total number of base models, m(x) is
the mmmth base model, and αm is the weight or coefficient of the m -th model,
indicating its contribution to the final prediction.

9. Neural Network Regression is an approach based on artificial neural networks
used for regression tasks, i.e., predicting continuous values. The formula for neural
network regression is:

y = f ∗ (Wnf (Wn–1(· · · f (W1 ∗ z + b1) · · · ) + bn–1) + bn) (15)

10. Extra Trees Regression is an ensemble learning method similar to Random Forest
but with some key differences. Like Random Forest, Extra Trees build a large
number of decision trees and combine their predictions to make a final predic-
tion. However, Extra Trees use more random techniques to build decision trees,
including the random selection of split points at each node.

ŷ =
1
N

N∑
i=1

ŷ1 (16)

2.5 Model Evaluation
Model evaluation is performed to assess the performance of the developed predictive
models. The evaluation criteria include [22]:

1. Mean Absolute Error (MAE): MAE measures the average absolute error between
predicted values and actual values. Lower MAE indicates a better model.

MAE =
1
N

Σn
i=1
∣∣yi – ŷi

∣∣ (17)

2. Mean Squared Error (MSE): MSE measures the average squared error between
predicted values and actual values. Lower MSE indicates a better model.

MSE =
1
N

Σn
i=1(yi – ŷi)2 (18)

3. Root Mean Squared Error (RMSE): RMSE is the square root of MSE, providing a
clearer interpretation of MSE in the same units as the original data.

RMSE =
√

MSE (19)
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4. R-squared (R2): R2 is a metric that measures the proportion of variability in the
dependent variable that can be explained by the independent variables. R2 values
range from 0 to 1, with higher values indicating a better model.

R2 = 1 –
Σn

i=1(yi – ŷi)2

Σn
i=1(yi – ȳ)2

(20)

5. Mean Absolute Percentage Error (MAPE): MAPE is the average absolute per-
centage error, providing a perspective on the scale of the error relative to actual
values.

MAPE =
1
n
Σn

i=1

∣∣∣∣yi – ŷi
yi

∣∣∣∣× 100 (21)

6. Median Absolute Percentage Error (MdAPE): MdAPE is the median of the absolute
percentage errors, which is more robust to outliers compared to MAPE.

MdAPE = median
(∣∣∣∣yi – ŷi

yi

∣∣∣∣× 100
)

(22)

2.6 Model Validation (K-Fold Cross-Validation)
Model validation is a crucial step in ensuring that the developed heat rate and CO2
emissions prediction models perform well on unseen data. K-Fold Cross-Validation is a
validation technique that divides the data into K subsets or "folds." The model is trained
on K-1 folds and validated on the remaining fold. This process is repeated K times,
with each fold serving as the validation set once. This technique helps to maximize
the use of data and provides a more accurate estimate of the model’s performance.

2.7 Model Implementation
The implementation of the heat rate prediction model is carried out by developing
an API (Application Programming Interface) that allows users to send operational
data from the CFSPP’s and receive heat rate predictions. In this case, the simple
implementation of the model can be done using the Postman application. This
approach facilitates real-time integration of the model into the operational system
of the power plant, enabling continuous monitoring and optimization of energy
efficiency. The API can handle various data inputs, process them using the trained
machine learning model, and return accurate predictions that help in making informed
decisions to enhance the plant’s performance and reduce greenhouse gas emissions.

3. Research Methods
As illustrated in the diagram below, this research procedure encompasses several stages,
starting with a literature review. In this stage, a literature review is conducted to
understand the basic concepts and relevant methods, including searching for journals,
books, and other publications related to heat rate and CO2 emissions prediction in
power plant using machine learning techniques [13] [10][10]. Following this, problem
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identification is carried out to determine the main problem to be addressed in this
study, which is the prediction of heat rate and CO2 emissions in CFSPP’s. The
problem identification is done clearly to ensure the appropriate focus of the research
[23] [2].

Figure 1. Research Flow Chart

Next, data collection is performed by gathering operational data from CFSPP’s to
be used in the model. This data includes various operational parameters such as load,
temperature, humidity levels, and others that are relevant for predicting heat rate and
CO2 emissions. After the data is collected, data preprocessing is conducted to clean
and transform the data for use in the model. This process includes handling missing
data, encoding categorical variables, normalizing or standardizing features, and other
preprocessing techniques to improve data quality.

Exploratory Data Analysis (EDA) is then conducted to understand the characteris-
tics of the data and the relationships between variables. EDA helps identify patterns,
anomalies, and important relationships between the features present in the data. If
EDA is conducted thoroughly, it will provide deep insights into the data, which can
help build better models. Conversely, if EDA is not done comprehensively, important
information might be overlooked, negatively impacting the accuracy and performance
of the developed models.

Following EDA, the development of heat rate prediction models is carried out by
developing various machine learning models such as linear regression, polynomial
regression, Lasso regression, Ridge regression, Support Vector Regression (SVR),
Random Forest, Gradient Boosting Regression, Elastic Net Regression, AdaBoost
Regression, and Neural Network Regression. The next stage is the selection of the
best model based on evaluation metrics such as Mean Absolute Error (MAE), Mean
Squared Error (MSE), Root Mean Squared Error (RMSE), and R-squared (R2). The
best-selected model is then used to develop the CO2 emissions prediction model,
considering relevant features.
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Model training is conducted by splitting the data into training and testing sets to
train the model and evaluate its performance. Model evaluation is performed using
various evaluation metrics to measure how well the model predicts heat rate and CO2
emissions. Model validation is also conducted to ensure its generalization capability,
using validation techniques such as K-Fold Cross-Validation [17].

Feature importance analysis is performed to analyze the most influential factors
in predicting heat rate and CO2 emissions. Techniques such as SHAP values and
feature importance plots are used to identify the features with the greatest impact
on the model. Afterward, the model is implemented for real-time predictions using
applications like Postman.

The final stage of this research is the results and discussion, where the obtained
results are analyzed and discussed to understand their implications in the operational
context of CFSPPs. Conclusions are drawn based on the analysis results, and rec-
ommendations are provided for further improvement or model application in real
operational scenarios.

3.1 Data Collection
The data used in this study comes from performance tests conducted on various CFSPPs
in Indonesia. These performance tests include comprehensive and crucial operational
parameters essential for analyzing and optimizing power plant performance. These
parameters include load, temperature, humidity levels, flue gas temperature, unburned
carbon, coal moisture content, and various other relevant parameters.

These performance tests aim to provide an overall picture of the efficiency and
performance of power plants under various operational conditions. The data collected
from approximately 468 test records offers a very rich and diverse database, which
is critical for developing reliable machine learning models. With this extensive and
varied dataset, the research can more accurately predict heat rate and CO2 emissions
and identify key factors influencing CFSPPs performance [15].

Through in-depth data analysis, this study seeks to uncover significant patterns and
relationships among operational parameters. This not only aids in the development of
accurate prediction models but also provides valuable insights for improving efficiency
and reducing emissions in CFSPPs. This data serves as a strong foundation for the
research, allowing the testing of various machine learning techniques and the selection
of the best models based on evaluation performance derived from the test data.

The specific parameters collected from the performance tests include:

1. Gross Load (MW)
2. Net Load (MW)
3. Boiler Type
4. Higher Heating Value (HHV) of Coal
5. Load Percentage
6. Operational Month
7. Ambient Temperature
8. Flue Gas Temperature
9. Unburned Carbon in Bottom Ash (BA)

10. Unburned Carbon in Fly Ash (FA)
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11. Total Moisture in Coal
12. Boiler Efficiency
13. Excess Air

Additionally, data related to CO2 emissions were collected, including:

1. Unit Location
2. CO2 Emission Factor
3. CO2 Emission Estimation Values

This comprehensive dataset allows for a thorough analysis and the development
of robust predictive models for heat rate and CO2 emissions, ultimately supporting
efforts to improve the efficiency and environmental performance of coal-fired power
plants.

Table 1. Descriptive Statistic of Data

3.2 Data Preprocessing
The data processing stage is a critical step in ensuring the quality and reliability of the
machine learning models developed for predicting heat rate and CO2 emissions. This
process involves several key tasks aimed at preparing the raw data for analysis and
modeling, including handling missing data, feature selection, and data transformation
[23].
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3.2.1 Handling Missing Data
Missing data can adversely affect the performance of machine learning models by
introducing biases and inaccuracies. To address this issue, appropriate techniques such
as imputation or removal of records with missing values were employed. Imputation
methods involve replacing missing values with meaningful substitutes. For numerical
data, this can include using the mean or median values, while for categorical data, the
most frequent category can be used. These imputation techniques ensure that the
dataset remains comprehensive and useful for model training, without the distortion
that missing values can cause [24].

3.2.2 Feature Selection
Feature selection is the process of identifying the most relevant parameters that
significantly impact the heat rate and CO2 emissions. This step is crucial for improving
the efficiency and accuracy of the models. Techniques such as correlation analysis
and feature importance from initial model training are employed to select the most
influential features. Correlation analysis helps in understanding the relationships
between different variables, allowing the identification of parameters that have strong
associations with the target variables. Feature importance, derived from initial model
training, provides insights into which features contribute most to the predictive
power of the model. By focusing on these key features, the model can achieve better
performance and generalization.

3.2.3 Data Transformation
Data transformation involves converting raw data into a format suitable for analysis.
This includes tasks such as normalization, standardization, and encoding of categorical
variables. Normalization adjusts the scale of numerical features to a common range,
which is particularly important when features have different units or scales. Stan-
dardization transforms data to have a mean of zero and a standard deviation of one,
ensuring that each feature contributes equally to the model. Encoding of categorical
variables involves converting qualitative data into numerical format, which is necessary
for most machine learning algorithms to process the data effectively.

3.2.4 Exploratory Data Analysis (EDA)
Exploratory Data Analysis (EDA) is performed to understand the characteristics of the
data and the relationships between variables. EDA helps identify patterns, anomalies,
and important relationships within the data. Techniques such as visualization and
statistical analysis are used to explore the data. Visual tools like histograms, scatter
plots, and correlation matrices provide intuitive insights into the data distribution and
relationships. EDA is essential for uncovering hidden patterns that can inform the
development of more accurate and robust models.
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Figure 2. Correlation matrix

In this section, based on the correlation matrix depicted above, we analyze the
correlation between various operational parameters and the Net Plant Heat Rate
(NPHR HHV HL) as well as CO2 emissions in CFSPPs. Heat rate, which reflects
the thermal efficiency of the power plant, shows several significant correlations with
other operational parameters. The Gross Power Output (MW) exhibits a negative
correlation of - 0.68 with NPHR, indicating that an increase in gross power output is
associated with a decrease in NPHR. This suggests that as the power plant generates
more power, its efficiency improves. A similar negative correlation is observed with
Net Power Output (MW), also at -0.68, reinforcing that higher net power output is
linked to enhanced plant efficiency.

Moreover, the Total Moisture content in the fuel demonstrates a moderate negative
correlation with NPHR, valued at -0.35. This implies that higher moisture content in
the fuel tends to be associated with better plant efficiency. In contrast, Gross Specific
Fuel Consumption (SFC) shows a high positive correlation of 0.67 with NPHR. This
indicates that an increase in gross specific fuel consumption is associated with a decrease
in plant efficiency. Additionally, Unburned Carbon in Bottom Ash (BA) shows a low
positive correlation of 0.14 with NPHR, suggesting that an increase in unburned
carbon in bottom ash is slightly associated with a decrease in plant efficiency.
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The Gross Power Output (MW) displays a very high positive correlation of 0.97
with CO2 emissions. This implies that an increase in gross power output is highly
correlated with an increase in CO2 emissions, indicating that more power generated
is associated with higher emissions. Similarly, Net Power Output (MW) shows the
same high correlation with CO2 emissions, confirming that higher net power output
is linked to increased emissions.

Gross Specific Fuel Consumption (SFC) also shows a high positive correlation of
0.60 with CO2 emissions, indicating that an increase in gross specific fuel consumption
is correlated with an increase in CO2 emissions. However, Unburned Carbon in
Bottom Ash (BA) exhibits only a low positive correlation of 0.16 with CO2 emissions,
while Unburned Carbon in Fly Ash (FA) shows a low negative correlation of -0.22.
This suggests that an increase in unburned carbon in bottom ash is slightly associated
with higher CO2 emissions, whereas an increase in unburned carbon in fly ash is
slightly associated with lower CO2 emissions.

Furthermore, the Higher Heating Value (HHV) of coal demonstrates a moderate
negative correlation of -0.41 with CO2 emissions. This indicates that coal with
a higher heating value is correlated with reduced CO2 emissions, suggesting that
higher-quality coal is more efficient and produces fewer emissions per unit of energy.

Understanding these correlations is crucial for identifying key factors that influence
the efficiency and emissions of coal-fired power plants. This information can be
utilized to optimize plant operations and reduce greenhouse gas emissions, thereby
supporting sustainability goals and national emission reduction targets. By focusing
on the significant correlations, power plant operators and policymakers can develop
strategies to enhance plant efficiency and minimize environmental impact.

3.2.5 Machine Learning Techniques
This study employs a variety of machine learning techniques to develop predictive
models for heat rate and CO2 emissions. The chosen techniques include Linear
Regression, Lasso Regression, Polynomial Regression, Ridge Regression, Support
Vector Regression (SVR), Random Forest, Gradient Boosting Regression, Elastic
Net Regression, AdaBoost Regression, Neural Network Regression, Decision Tree
Regression, and Extra Trees Regression [9] [24].

These techniques were selected to explore a range of approaches and identify
the most effective models for predicting heat rate and CO2 emissions in CFSPP’s.
Linear Regression, Lasso Regression, Polynomial Regression, and Ridge Regression
provide a solid statistical foundation, allowing for the analysis of linear and polynomial
relationships in the data, as well as handling multicollinearity issues. Support Vector
Regression (SVR) offers robust predictions by finding the optimal hyper plane that
minimizes prediction error, which is effective for high-dimensional datasets.

Ensemble methods such as Random Forest, Gradient Boosting Regression, and
Extra Trees Regression combine multiple decision trees to enhance predictive accu-
racy and reduce over fitting. These methods are particularly powerful for capturing
complex, non-linear relationships in the data. Elastic Net Regression, which combines
the strengths of Lasso and Ridge regression, provides a balance between feature selec-
tion and multicollinearity management. AdaBoost Regression focuses on improving
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the performance of weak learners by emphasizing difficult-to-predict instances, thus
boosting overall model accuracy.

Neural Network Regression leverages the power of artificial neural networks to
model highly complex and non-linear relationships, making it suitable for capturing
intricate patterns in large datasets. Decision Tree Regression, with its interpretability
and simplicity, is useful for initial model exploration and feature importance analysis.

By leveraging these diverse machine learning methods, the study aims to develop
robust and accurate models for optimizing energy efficiency and reducing greenhouse
gas emissions in CFSPP’s. This comprehensive approach ensures that the models can
capture a wide range of relationships within the data, providing reliable predictions
and actionable insights for improving power plant operations. The multi-faceted
strategy allows for the identification of the most suitable model or combination of
models, tailored to the specific requirements and characteristics of the operational data
from coal-fired power plants.

4. Results and Discussion
4.1 Model evaluation result
The evaluation of various machine learning models was conducted to determine the
most effective model for predicting heat rate and CO2 emissions. The results for the
key metrics— Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean
Squared Error (RMSE), and R-squared (R2)—are summarized in Table 2. The results
indicate that the Extra Trees Regression model outperformed the other models with
the highest R-squared value and the lowest prediction errors for heat rate [25] [26].

4.2 Selection of the Top Three Models
Based on the initial evaluation, three top-performing models were selected for further
validation. These models were chosen because they demonstrated the best performance
in terms of R-squared values and prediction errors. The R-squared value measures
how well the model fits the actual data, while prediction errors are assessed using
metrics such as Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root
Mean Squared Error (RMSE). Accurate model selection is crucial to ensure reliable
predictions of heat rate and CO2 emissions, facilitating better decision-making in
CFSPP’s. The three selected models are:

1. Extra Trees Regression: This model is known for its ability to handle large and
complex datasets while providing accurate predictions. Extra Trees Regression uses
numerous decision trees to generate more stable predictions and reduce overfitting.

2. Gradient Boosting Regression: This model builds a series of small decision trees
that are incrementally improved to reduce prediction errors. Gradient Boosting
Regression is effective in capturing non-linear relationships in the data, making it
suitable for complex heat rate and CO2 emissions predictions.

3. Random Forest Regression: This model employs multiple decision trees built
on random subsets of the data to improve prediction accuracy and reduce the risk
of overfitting. Random Forest Regression delivers good results for various types
of operational data from CFSPP’s.
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Table 2. Model Evaluation Results

4.3 Validation with 5-Fold Cross-Validation
5-Fold Cross-Validation was chosen as the validation method in this study for several
reasons that support its effectiveness and reliability in evaluating the performance of
machine learning models. Cross-validation is a technique used to assess how well
a machine learning model will perform on data that it has not seen before. This
technique divides the data into several parts or "folds," trains the model on most of
the data, and tests the model on the remaining part. This process is repeated several
times to ensure that the model is thoroughly evaluated.

The choice of the number of folds in cross-validation affects the bias and variance
of the model performance estimates. With K = 5, cross-validation offers a good balance
between bias and variance. Using too few folds, such as K = 2, can lead to biased
estimates because the model is trained on a too-small subset of data. Conversely, using
too many folds, such as K = 10 or K = 20, can increase variance because the model is
trained on a too-large subset of data and tested on a too-small subset. K = 5 provides a
good compromise, reducing bias without significantly increasing variance [21].

Additionally, the choice of K = 5 is also based on computational considerations.
5-fold crossvalidation is computationally efficient compared to cross-validation with a
larger number of folds such as K = 10. In the context of this study, where machine
learning models are trained on large datasets, K = 5 allows for a relatively quick
cross-validation process without sacrificing the accuracy of model evaluation. This is



470 Ariandiky Eko Setyawan et al.

important to ensure that the entire model development and evaluation process can be
completed in a reasonable time frame [2].

The choice of K = 5 is supported by consensus in the literature and common
practice in the field of machine learning. Many studies have shown that K = 5 is a
reliable choice for crossvalidation, providing accurate and stable estimates of model
performance. Some studies also indicate that 5-fold cross-validation yields comparable
results to 10-fold cross-validation in terms of accuracy but with lower computational
costs [3]. Therefore, K = 5 is often used as a standard in many machine learning
applications.

In this study, the dataset used is sufficiently large, allowing for the data to be
divided into 5 representative folds. Each fold contains about 20% of the total data,
which is enough to ensure that each subset of data reflects the overall distribution
of the data well. This is important to ensure that the model is trained and tested on
representative subsets of data, making the cross-validation results more reliable [5].
Thus, the validated models can be used to improve operational efficiency and reduce
CO2 emissions, supporting environmental sustainability goals.

Table 3. 5-Fold Cross-Validation Results

The Extra Trees Regression model consistently showed superior performance
across all folds, indicating its robustness and generalizability for predicting heat rate.

4.4 Feature Importance for Heat Rate (Extra Trees Regression)
The feature importance analysis for the Extra Trees Regression model specifically for
heat rate prediction is presented in Table 4. This analysis identifies the most influential
factors that affect the heat rate.
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Table 4. Feature Importance for Heat Rate (Extra Trees Regression)

Figure 3. Feature Importance (Extra Trees Regression)

4.5 Modeling Extra Trees Regression for CO2 Emissions
After determining that the Extra Trees Regression model is the best for predicting
heat rate, this model was then used to predict CO2 emissions. The process involved
training the model with the relevant CO2 emission parameters and evaluating its
performance.

Table 5. Model Evaluation for CO2 Emissions (Extra Trees Regression)
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The Extra Trees Regression model shows excellent performance in predicting
CO2 emissions with a very high R-squared value and low prediction errors. However,
the MAPE value being infinite suggests there are some issues with extremely small
actual values of CO2 emissions causing division by zero. This model can still be highly
useful for operational optimization in coal-fired power plants.

4.6 Feature Importance for CO2 Emissions (Extra Trees Regression)
The feature importance analysis for the Extra Trees Regression model specifically for
CO2 emissions prediction is presented in fig.4 and Table 6

Figure 4. CO2 Feature Importance (Extra Trees Regression)

Table 6. Feature Importance for CO2 Emissions (Extra Trees Regression)
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4.7 Use of Postman for Model Prediction
To implement and test the developed machine learning model for predicting heat rate
and CO2 emissions, the Postman application was used. Postman allows for easy API
testing by sending various types of HTTP requests. In this study, a POST request
was sent to the prediction endpoint with the relevant operational parameters.

4.7.1 Model Deployment and API Setup
The machine learning model developed in Python was first trained and validated
using a dataset consisting of 468 performance test results from CFSPPs conducted by
a power plant performance testing company. The dataset included various operational
parameters such as boiler type, ambient temperature, flue gas temperature, and others.
The Extra Tree Regression technique was chosen due to its high performance in
predicting heat rate and CO2 emissions.

Once the model was trained and validated, it was deployed as an API using a web
framework like Flask. This involved wrapping the model’s prediction functionality in
an API endpoint that could accept HTTP requests and return predictions.

Figure 5. Model prediction with Postman

Using Postman, the model’s predictions for CO2 emissions and heat rate were
obtained. This setup facilitates real-time predictions and can be integrated into the
operational workflow of CFSPP’s to aid in decision-making and optimization efforts.

Predicted Outputs:

• Predicted CO2 Emissions: in tons of CO2e per hour
• Predicted Heat Rate: in kcal/kWh.

With the model deployed as an API, Postman was used to send POST requests to
the prediction endpoint. This allows for real-time data input and model predictions,
facilitating immediate operational adjustments based on the predictions.

1. Real-time Data Input: Operational data from the CFSPPs, such as boiler type,
ambient temperature, and flue gas temperature, were input into the Postman
application. The application then sent this data to the Extra Tree Regression
model for prediction. This process ensures that the model receives up-to-date and
accurate information, which is crucial for making reliable predictions.
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2. Model Prediction: The model processes the input data and provides predictions for
heat rate and CO2 emissions. These predictions are then analyzed to determine
the necessary operational adjustments to optimize performance. The accuracy of
these predictions is critical as they form the basis for any subsequent operational
changes

3. Operational Adjustments: Based on the model’s predictions, adjustments were
made to the operational parameters to optimize heat rate and reduce CO2 emis-
sions. For instance, adjustments to the air-fuel ratio, boiler operation, and load
management were implemented to achieve the desired outcomes. These changes
are crucial for enhancing the overall efficiency of the power plants and ensuring
they operate within optimal parameters.

4. Verification of Model Effectiveness: The effectiveness of the model was further
verified by comparing the predicted values with actual performance data over a
certain period. This comparison was done by continuously monitoring the opera-
tional parameters and outcomes, ensuring that the predictions matched realworld
data. The consistent alignment of the predicted values with actual performance
data confirmed the reliability and accuracy of the Extra Tree Regression model in
real-time operational settings.

5. Continual Monitoring and Improvement: Beyond the initial implementation,
the model’s performance was continually monitored to ensure ongoing accuracy
and effectiveness. This involved regular updates to the model based on new
operational data and periodic re-evaluations using additional cross-validation
techniques. This ongoing process ensures that the model remains effective under
changing operational conditions and continues to deliver reliable predictions.

5. Conclusion
This study explored the application of various machine learning techniques to predict
heat rate and CO2 emissions in Indonesia CFSPP’s. The primary aim was to identify
the most effective model and the key operational factors influencing these parameters
to enhance the efficiency and environmental performance of CFSPP’s.

Through rigorous evaluation, the Extra Trees Regression model was identified
as the most effective for predicting both heat rate and CO2 emissions. This model
demonstrated the highest R-squared values, with 0.947 for heat rate and 0.993 for
CO2 emissions, and the lowest prediction errors among all the evaluated models.
Specifically, the Mean Absolute Error (MAE) for heat rate prediction was 133,648,
and for CO2 emissions, it was 21.02. In terms of significant factors affecting these
predictions, the study identified the most important variables for each model. For heat
rate, the critical factors were Installed capacity (0.578523), Boiler type (0.155273),
load percentage (0.086666), excess air percentage (0.034545) and Operation month
duration (0.028193). For CO2 emissions, the significant factors included Installed
capacity (0.526118), Est Coal flow (0.378252), load percentage (0.033265), NPHR
(0.020709) and Boiler type (0.010889)

The developed Extra Trees Regression model was successfully implemented using
the Postman application to facilitate real-time predictions. This setup is designed to be
integrated into the operational workflow of CFSPP’s, providing valuable insights that
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can be used to optimize operations and reduce emissions. This integration highlights
the practical applicability of the model in enhancing the operational efficiency and
environmental sustainability of coal-fired power plants in Indonesia.
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