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Abstract
Lithium-ion batteries (LIBs) are extensively utilized in many applications, from power
plant utilities to portable electronic devices. Nevertheless, the performance and longevity
of the LIB are affected by the interconnected electro-thermal-aging (ETA) dynamics that
occur during the repeated process of charging and discharging. This study presents a tech-
nique for managing the charging and discharging of LIBs by controlling the operational
voltage, addressing this issue. The technique involves employing a proportional-integral-
derivative (PID) controller, which involves interconnected ETA dynamics. The result of
the suggested technique is confirmed by comparing experimental data obtained from a
cylindrical 26650 lithium-iron phosphate (LFP). The PID controller optimizes the re-
sponse time of charging and discharging through the voltage while affecting the lifetime
of the cell. The results indicated that the implementation of the PID controller allows
for a rapid and secure charging and discharging process for LIB, leading to improved
cell health and a longer cell life expectancy by controlling a certain degree of parameter
known as overshoot. This strategy has a potential to be implemented in the charging and
discharging process that positively affects the LIBs performance.
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1. Introduction
LIB cells are extensively employed as electric energy storage devices because of their
features, including low self-discharge rate, no memory effect, higher energy density
per weight and volume, consistent performance, and a longer cycle life in comparison
to alternative secondary battery kinds [1]. They are used in many systems including
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portable electronics, electric cars, renewable energy systems, marine current energy
systems, stationary energy storage, etc. [2] [3] [4]. The performance of the battery cell
is affected by its degradation at microscopic levels. Furthermore, the phenomenon
of overcharging and over discharging battery cells not only results in irreversible
damage to the cells, but also poses potential safety hazards [5] [6]. To ensure the
safety and reliability of LIBs throughout their operation, the battery management
system (BMS) plays an important role in this scheme. It oversees several aspects
such as charge/discharge cycles, temperature, state-of-charge (SOC), status of health
(SOH), and current/voltage information, all of which are crucial for the user [7]. Since
the quantifiable parameters of a battery are terminal voltage, current, and surface
temperature, an effective BMS design requires efficient status and parameter estimation
algorithms, which necessitate accurate battery models [8] [9]. Therefore, battery
modeling must account for changes in internal parameters.

One of the key factors affecting LIB performance is the electro-thermal aging
dynamics that occur during charge and discharge cycles. These dynamics involve
complex interactions between electrical, thermal, and aging processes within the
battery cell. To obtain accurate SOC estimates, precise battery models are essential.
There are several dynamic models for LIB, including electrochemical models, neural
network (NN) models, electric circuit models (ECM), and others [10]. The elec-
trochemical model is a direct model presenting the chemical and electrochemical as
well as the mechanical and transport laws, applying high-order differential equations
which can predict closely to the real characteristics of LIBs. However, this strategy
is usually characterized by a very high computational cost. In fact, electrochemical
models consist of high order differential equations, such as pseudo two-dimensional
(P2D) models, which are not suitable for online applications [11] [12]. On the other
hand, to achieve the optimal result in modeling, the NN requires a huge bundle of
experimental data for its calculation. The system does not need understanding of
the precise electrochemical process [13]. Alternatively, it undergoes a reiteration
process using a learning algorithm until the estimation error falls below a specific
threshold. However, a direct variable extraction approach is still required to accurately
determine the variables of the first-order equivalent circuit model (ECM) [12]. In
contrast, the ECMs are usually identified by a less significant variable in estimating
the battery cell parameter that mentioned above and are frequently employed in
online applications. In fact, these models utilized a linear system such as an equivalent
circuit which represents the elemental aspect of LIBs [14]. Nevertheless, in the most
case, these values lack a tangible explanation and can just offer a depiction of abstract
physical properties. ECM models in several research have been calibrated using an
appropriate optimization technique, as the actual lumped parameter values are rarely
known beforehand.

The 2RC model is regarded as a prototypical ECM battery model due to its dis-
tinctive nature in comparison to other systems and its practical potential application in
the engineering world. A model incorporating a second-order resistance-capacitance
(RC) circuit network provides more accurate predictions for the behavior of some bat-
tery cells [15]. The equivalent circuit model reflects the fluctuating voltage properties
of a battery by employing resistors, capacitors, constant voltage sources, and other cir-
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cuit components to construct a circuit network. This model is a frequently employed
concentrated variable framework for system modeling and real-time management
[16] [17] It is distinguished by its simplicity, as it typically has a limited number of
variables, which makes it easier to derive the state space equation.

In this study, we use the 2RC ECM model because it can improve efficiency
and battery lifespan. It can be achieved by adjusting the voltages Up1 through the
utilization of a proportional-integral-derivative (PID) controller. The design of the
PID controller for a lithium-ion battery (LIB) utilizing the ETA model necessitates
this adjustment to guarantee optimal charging and discharging of the battery, while
concurrently minimizing the detrimental impact of battery ageing on the battery.
Moreover, the dynamic model of the ETA is implemented in MATLAB/Simulink
through a PID controller. The model is then validated to evaluate the efficacy of
this methodology by comparing to experimental data obtained from the datasheet of
A123-ANR26650M1A battery (26650 LFP cell). The result indicated that a significant
improvement in term of the cells cycle life, reflecting the impact of this strategy in
improving the charging and discharging process.

2. Battery Modeling and Variable Input
2.1 Equivalent Circuit Model
Figure 1 illustrates that Uoc (SOC) denotes the open circuit voltage, which is directly
related to the SOC of the battery. The term "ohmic resistance" is used to refer to the
internal resistance of the battery, which is denoted as R0.

Figure 1. The proposed 2RC-ECMModel
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The presence of resistance in the circuit results in a reduction in voltage across the
battery when current passes through it. The resistances Rp1 and Rp2 represent the
resistances to polarization of the battery. The presence of these resistances results in a
decrease in voltage across the battery due to the accumulation of polarization layers
on the electrodes. Cp1 and Cp2 represent the capacitances associated with the polar-
ization of the battery. The capacitances in question serve as energy storage devices,
accumulating energy throughout the battery’s charging process and subsequently
releasing it during discharge. Up1 and Up2 represent the reduction in voltage across
the polarization capacitances. The symbol Ib represents the electric current passing
through the battery. The voltage measured at the battery terminals is represented by
the symbol Ub.

2.2 Thermal Model
A thermal model is a mathematical representation of the thermal behavior of a system
or piece of equipment. It is used to predict the temperature distribution and heat
transfer within the system and to analyze the thermal performance of the system under
different operating conditions.

Figure 2. Thermal Model

Figure 2 presents a thermal model that represents the heat transfer dynamics of
cylindrical battery cells. This model considers the impact of both the core temperature
(Tc) and the surface temperature (Ts). Tc and Ts represent core temperature and
surface temperature, respectively, while Tf denotes ambient temperature. Tc and Ts
can be expressed in equations as follows [18]:

Tc =
Ts – Tc
RcCc

+
Q(t)
Cc

(5)

Ts =
Tf – Ts

RuCs
–

Ts – Tc
RcCs

(6)

Rc and Ru are radiation resistance and thermal resistance due to radiation, while
Cc and Cs represent the heat capacitance of a battery. Ru is a function of the cooling
convection flow rate, the rate of which can be adjusted to control the thermal behavior
of the battery.
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2.3 Aging Model
The aging model is a quantitative depiction of the deterioration processes that take
place in lithium-ion batteries, which impact their functionality and longevity. The
objective of the model is to forecast the SOH and lifespan of a battery by considering
a number of parameters, including battery operation, battery consumption, and the
materials employed. The battery capacity is a variable characteristic that diminishes
over time as the battery is used. In accordance with the literature review, the formula
for calculating Closs is as follows [18]:

Closs = M(Ic)exp

[
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Ahz (7)
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where Closs is the percentage of capacity loss, M(Ic) is pre-exponential factor as a
function of C-rate, z is power-law factor, Ic is current of core, Tc is core temperature,
Atol is total discharge Ah throughput, N is number of cycles until end of life, Cbat is a
cell’s nominal capacity.

2.4 Electro-Thermal-Aging
The electro-thermal-aging dynamics in LIBs involve the combined aging process,
which is influenced by both electrochemical and thermal variables. The number of
charge cycles, voltage, and current, among other electrochemical parameters, can
lead to the deterioration of internal components. Furthermore, thermal factors, such
as the temperature of the battery, can also affect performance and lifespan. It has been
demonstrated that elevated temperatures can accelerate electrochemical processes,
resulting in battery deterioration. Furthermore, these reactions can subsequently
elevate the battery temperature. It is therefore essential to gain a comprehensive
understanding of these dynamics if we are to refine LIB solutions in order to effectively
reduce the aging process and prolong the lifespan. The ETA approach integrates these
factors to accurately reflect the performance of LIBs under diverse conditions. This
is illustrated in Figure 3, where Ib (current) and Tf (temperature) are employed as
inputs, while Ts, Tc (internal temperatures), and SOH are the resulting outputs.
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Figure 3. ETA Model

3. Research Methods
3.1 MATLAB/Simulink
Simulink is a block diagram environment used for multidomain simulation and model-
based design, such as modeling dynamic systems using a graphical editor and cus-
tomizable block libraries. Additionally, Simulink integrates with MATLAB, allowing
MATLAB algorithms to be incorporated into models and facilitating further analysis
of simulation results. This research utilizes MATLAB version R2021a. By creating
Simulink blocks from the ETA model, a simulation diagram as shown in Figure 4 is
obtained, comprising charge and discharge processes.

Figure 4. Flowchart diagram of the proposedmethod
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Figure 4 shows a flowchart diagram derived from the full representation of the
ETA model, which consists of several model subsystems. The charge and discharge
blocks have the same full model, with the only difference being the input coefficients
for each Simulink block. The Simulink block diagram above illustrates standard
charging or discharging at a current of 3A for the A123-ANR26650M type.

3.2 PID Controller
PID is a feedback control loop commonly used in industry to regulate various process
variables such as temperature, pressure, and flow. This controller operates by calcu-
lating the error in the system, which is the difference between the desired setpoint
and the actual value of the process variable, and then adjusting based on three main
components: proportional, integral, and derivative.

The proportional component reacts to the current error by adjusting the output
directly. The correction provided is proportional to the magnitude of the error, result-
ing in a quick response to changes in the process variable. The integral component
works by accumulating past errors and making adjustments to address persistent errors,
helping achieve a stable condition without sustained errors. The derivative component
focuses on the rate of change of the error and provides adjustments based on how
quickly the error is changing. This helps dampen sudden changes in the process
variable and enhances system stability.

In this study, we control the voltages Up1c (charge) of LIBs using the ETA model,
including the PID control process on ETA. In detail, the selection of PID parame-
ters utilises the reference voltage value Up1c, which is the polarised battery voltage.
Subsequently, the control values the proportional gain (Kp), integral gain (Ki), and
derivative gain (Kd) are determined, which serve as the inputs for the ETA model.
The aforementioned parameters are then tuned using SIMULINK in order to produce
a voltage that is controlled by the PID.

4. Results and Discussion
The relationship between SOC and parameters for charging and discharging LIBs
can be observed in Figure 5. The charging and discharging coefficients for LIBs are
found in the experimental data.

Figure 5. The relationship between Ohmic resistance (R0c, R0d, Rp1c, Rp2c, Rp1d, Rp2d) vs. SOC.
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Figure 6. The parameter of capacitance (Cp1c, Cp2c, Cp1d, Cp2d) vs SOC

R0c represents the parameter of Ohmic resistance during charging, while R0d rep-
resents the parameter of Ohmic resistance during discharge. During the discharging
process of LIBs, R0d tends to increase. The relationship between SOC and resistance
parameters during both charging and discharging of LIB can be understood from
Figure 5, Rp1c and Rp2c represent the charging resistances of LIB, while Rp1d and Rp2d
represent the discharging resistances. Cp1c and Cp2c denote the charging capacities of
LIB, whereas Cp1d and Cp2d denote the discharging capacities. According to Figure
5, the values of Rp1c and Rp2c decrease significantly. This demonstrates that during
both the charging and discharging processes of the battery, the power dissipation
decreases when the battery is fully charged.

Based on Figure 6, the parameter of capacitance (Cp1c, Cp2c, Cp1d, Cp2d) vs.
SOC, these curves show how the capacitance of a system changes during charging
and discharging. The capacitance Cp1c and Cp1d showed fluctuate graph during
charging, the Cp1c increase from SOC 0 to SOC = 0.4 and decrease until SOC = 0.6
but Cp1d increase until SOC around 0.7 this happened because of the coefficient of
parameters. Cp2c and Cp2d or double layer polarisation when SOC around 0.6 for
Cp2d the capacitance reached around 50000(F).

During the charging or discharging of LIB, capacitance and resistance vary,
which can affect the performance and efficiency of the LIB. Therefore, an optimal
control model is needed to maintain the performance and efficiency of the battery.
The simulation results of Uoc (SOC) and SOC against temperature differences can
be observed in Figure 7, where X, Y, Z represent temperature, SOC, and voltage
Uoc (SOC).
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Figure 7. Uoc (SOC) over the SOC range and temperatures of -30 °C to 55 °C

The relationship of Uoc (SOC) voltage to SOC and temperature difference when
SOC is constant at 3 setpoints of 0.588235 viz: when (X=-30, Y=0.588235, Z=3.109),
(X=25, Y=0.588235, Z=3.29285) and (X=50, Y=0.588235, Z=3.41688). The value of
Uoc(SOC) increases with temperature. However, when the temperature is constant
in Figure 4.4 with 3 setpoints, namely a temperature of 50°C, obtained values at set-
points (X=5, Y=1, Z=3.2829), (X=5, Y=0.647059, Z=3.28187) and (X=5, Y=0.117647,
Z=3.28031).

4.1 Voltage simulation employing PID controller
When tuning the voltage Up1c using a PID controller, the goal is to find optimal
values for the Kp, Ki, and Kd. This process is used to minimize the error between the
setpoint and the actual variable. In this study, based on simulation, the value of Up1c
is 0.0015 under conditions where the C-rate is 2 and SOC is 0.7.

Figure 8. The parameter of capacitance (Cp1c, Cp2c, Cp1d, Cp2d) vs SOC
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Figure 8. Battery cycle life vs C-rate at different temperature (oC), a) T=30 oC, b)
=35 oC, c) =40 oC and d) =45 oC. The black color: reference; blue: PID controller
with overshoot; and red: PID controller with non-overshoot.

In an end-of-life (EOL) cycle with a C-rate range of 0 to 10 at various temperatures
between 30°C and 45°C. In Figure 8, the PID controller with overshoot shows the
tuned voltage Up1c gives a rise time of 1.15 seconds and a settling time of 4.08 seconds
and the overshoot obtained is 7.86%. The reference values under conditions where
C-rate = 2, SOC = 0.7 and temperature 30 oC or the LIB are as follows: Atol = 9771
with a cycle number (N) = 4442. Temperature is a crucial factor that greatly affects
the performance of lithium-ion batteries and restricts their practical applications. This
result has been confirmed from the previous study in the literature [19].

Table 1. The reference of C-rate, Atol and N based on the ETA Model when T = 30oC from the datasheet of
LFP [18].

Table 2. C-rate, Atol and N based on the ETA Model when T= 30 oC

After PID control tuning, the values obtained are Atol–PID = 13445 and N–PID =
6111. These values are lower because the PID tuning resulted in faster rise time 1.15
seconds and settling time 4.08 seconds compared to the initial conditions. However,
in the case where there is no overshoot (0% OS), with rise time = 8.25 seconds and
settling time = 14.1 seconds, the values obtained are Atol–PID (0% OS) = 20968 and
N–PID (0% Overshoot) = 9531.

5. Conclusion
This study presents a new approach to optimize the charging and discharging of LIBs
by considering combined electro-thermal-aging dynamics. The proposed PID con-
troller demonstrates effective performance in regulating charging conditions, battery
voltage, and temperature, thereby minimizing aging impact. The PID controller
employed for controlling Up1c shows faster response time by 1.15 seconds in PID
rise time or 1.35 seconds faster than before tuning and settling time of 4.08 seconds
with overshoot 7.86%, NPID of 6111 were obtained with an overshoot of 7.86%. In
addition, if the overshoot PID of 0%, the rise time of 8.25 seconds and the settling
time of 14.1 sec, the cycle number (N) without overshoot would be 9531 cycles. This
means that with less overshoot in PID tuning, the cycle number will increase, but
if the faster response time results in a decreased cycle number (N), which affects the
batteries SOH, leading to deterioration of the batteries performance.
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