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Abstract
In modern industrial systems, particularly with the advancement of the Internet of Things
(IoT), industry players can record machine and system data for comprehensive analysis.
This capability is crucial for detecting anomalies and taking necessary corrective actions.
However, it is common for manufacturers to lack recorded anomaly datasets, especially
for newly operational systems. In this paper, we develop a model to detect anomalies
in an imbalanced dataset from the Secure Water Treatment (SWaT) system. The per-
formance of the proposed model is compared with previous works, demonstrating sig-
nificant improvements in anomaly detection capabilities where it achieves accuracy of
0.9546, precision of 0.9086, recall of 0.6654, and F1 score of 0.7681

Keywords: wasserstein gan, deep convolutional neural network, long-short term memory, anomaly
detection, multivariate time series

1. Introduction
The Internet of Things (IoT) is accelerating the digitization of industrial control sys-
tems (ICS), leading to significant improvements in the efficiency of industrial pro-
cesses. Cyber-Physical Systems (CPS), a key component of ICS, serve dual pur-
poses: they enable precise control and facilitate extensive data collection for subse-
quent analysis. The integration of advanced systems—such as sensors for monitoring
machine performance [1], enhanced data acquisition and storage technologies [2],
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and cutting-edge artificial intelligence (AI) algorithms [3] has made the develop-
ment of data-driven analytics increasingly feasible. By combining human creativity
with machine-generated analytics, organizations can achieve superior outcomes in
problem-solving, strategic planning, and operational enhancements. This synergistic
approach leverages the strengths of both human insight and automated data process-
ing for optimal data-driven results. [4].

The implementation of data-driven analytics has been explored from various per-
spectives, one of which is anomaly detection. An ICS generates a large volume of
multivariate time series data, which may encompass both "normal" system behav-
ior and "anomalous" behavior caused by factors such as sensor faults, human errors,
or cyber attacks [5]. Various methods have been investigated to identify the most
effective approach for detecting anomalies in datasets. Filovonov et al. in [6] and
[7] developed a neural network-based forecasting approach for anomaly detection in
their studies, while Matteson et al. proposed a non-parametric change point detection
method for the same purpose [8]. Goodfellow et al. proposed Generative Adversarial
Networks [9] to handle image related tasks. It is then enhance to handle task beside
image [10], one of the is anomaly detection. The original model of GAN is power-
ful, but it is hard to train. So, there are improved model developed to stabilize the
training, for instance from Arjovsky et al. [11] by improving GAN’s loss metric and
from Gulrajani et al. [12] by adding gradient penalty to avoid undesired behaviour
during training. Improved performance of GAN can be achieved by combining it
with other deep models, for example with Long-Short Term Memory (LSTM) [13]
by Xu et al. Generative DL model is used for fault detection, especially when the data
has imbalance ratio between "normal" and "anomalous" data, for instance in [14],
[15] and [16].

Imbalanced datasets are a common issue in industrial environments. There are
two primary approaches to address this imbalance: data-level methods and algorithm-
level methods [17]. At the data level, one popular oversampling technique is Synthetic
Minority Over-sampling Technique (SMOTE) [18] which operates based on the k-
nearest neighbor method. Recently, researchers have begun using Generative Adver-
sarial Networks (GANs) for data oversampling, demonstrating promising results in
generating synthetic data or images [19]. The application of GANs for oversampling
has been explored in various domains, including crash prediction [18], credit card
fraud detection [15] and motor fault diagnosis [20]. At the algorithm level, methods
are designed to adjust classifiers to better handle imbalanced data [17]. For example,
Wu et al. proposed the Easy-SMT method to address imbalanced datasets from an
algorithmic perspective [21].

We address the challenge of finding anomaly in imbalanced industrial data by
proposing a Long Short-Term Memory - Deep Convolutional Wasserstein GAN
with Gradient Penalty (LSTM-DC-WGAN-GP). The Generator is trained to gen-
erate synthetic time series data that reflects normal system behavior and Critic (Dis-
criminator) is trained to distinguish feature of real data and synthetic data. The syn-
thetic data generated by the trained model will be compared to real testing data and
its result will be classified based on a combination of reconstruction error and feature
matching error to detect anomalies. The SWaT dataset, as described in [22], will be
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used for training and testing our model.
The main contributions of this paper are as follows: (1) The design of an LSTM-

DC-WGAN-GP model to generate multivariate synthetic time series data for detect-
ing anomalies in imbalanced datasets, and (2) A comparative analysis demonstrating
that the developed model outperforms other existing models and algorithms in terms
of performance.

2. Anomaly Detection
In industrial environments, anomalies are defined as deviations in recorded data that
differ from the usual behavior of tools, machines, or equipment [23]. Detecting
anomalies is essential for manufacturers to maintain production efficiency and pre-
vent unnecessary downtime. Anomaly detection involves identifying regions or time
periods where data deviates from the norm. However, achieving satisfactory results
in anomaly detection presents several challenges, such as unclear boundaries between
normal and anomalous behavior, indistinct anomalies resulting from malicious ac-
tions, evolving patterns of normal and anomalous data, the need for labeled data
for training and validation, varying anomaly behaviors across different domains, and
noise in recorded data [23]. Additionally, class-imbalanced data, where normal con-
dition data is more prevalent than anomalous data, is a common issue in real-world
cases [24]. The Secure Water Treatment (SWaT) dataset from iTrust, Center for
Research in Cyber Security at the Singapore University of Technology and Design
[22] is a prime example of such imbalanced data.

2.1 Imbalance Data
Having a balance data is important factor in building an anomaly detection model
based on machine learning. Imbalance data cause lower accuracy of generated model
[25]. But, it turns out its very common for industry player not to have a balance
recorded data. This topic has been addressed as one obstacle in training an anomaly
detection model [23]. As this is a common situation in CPS, Goh et al. present a
realistic dataset from a fully operational, scaled-down water treatment plant [22].

The dataset comprises six main processes, each involving 51 parameters, a com-
bination of 25 sensors, and 26 actuators [5]. The SWaT dataset is divided into two
subsets: training data and testing data. All parameters are recorded once per second
over an 11-day period. The training data covers seven days of normal operations,
while the remaining six days include a combination of normal and attacked condi-
tions. Notably, the data collection process began from an empty state, and it took
approximately five hours for the system to stabilize [22].

There are 4 types of attacked recorded in SWaT, they are:

1. Single Stage Single Point (SSSP): single attack on one point in the system. There
are 23 recorded attacks. For example: attack on AIT-202 where its value set to 6
suddenly.

2. Single Stage Multi Point (SSMP): single attack aiming to multiple points in the
system. There are 6 recorded attacks. For example: attack on MV-101 and LIT-
101 where status of MV-101 kept on and value of LIT-101 set to 700mm.
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3. Multi Stage Single Point (MSSP): similar to SSSP, but this attack performed on
multiple stages. There are 4 recorded attacks. For example: attack on FIT-401
and AIT-502 where value of FIT-401 set to 0.5 and value of AIT-502 set to 140
mV.

4. Multi Stage Multi Point (MSMP): similar to SSMP, but this attack performed on
more than one stages. There are 3 recorded attacks. For example: attack on UV-
401, AIT-502 and P-501 where UV-401 is stopped, value of AIT-502 set to 150
and force P-501 to remain on.

For more details on attack scenarios, attack points, impacts, and other informa-
tion, refer to Table I in [26] and [22]. Based on the attack data, three distinct attack
behaviors were identified:

1. Sudden Changes Beyond Normal Range: Measurements abruptly deviate beyond
the recorded normal data range. For instance, in the LIT-301 attack, the normal
data range is between 132.8185 and 1014.724, but during the attack, the recorded
data spiked to 1200.

2. Sudden Changes Within Normal Range: Measurements abruptly change but re-
main within the recorded normal data range. An example is the FIT-401 attack,
where the normal data range is between 0 and 1.747862. During the attack, the
data was set to 0.7 for a while before dropping to 0.

3. Gradual Changes: Measurements change gradually over time. For instance, in
the LIT-101 attack, the recorded data increased by 1mm per second during the
attack.

The dataset includes 36 attack scenarios, though not all were successful. Accord-
ing to the shared dataset from iTrust [22], there is a class imbalance, with only 5.7%
of the data being anomalous.

2.2 Generative Adversarial Networks (GAN) Algorithm and Architecture
Generative Adversarial Networks (GANs), initially proposed by Goodfellow et al., are
designed for image sample generation. In a GAN, the Generator network denoted as
Generator G is trained to map data from a latent space or noise z and create synthetic
data samples denoted as pg. The Discriminator network, denoted as D is trained to
output the probability that a given data sample comes from the real data distribution
x rather than the synthetic distribution pg. The interplay between D and G forms a
two-player minimax game, with the objective function V(G, D) defined as follows
[9]:

min
G

max
D

V(D, G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1 – D(G(z)))], (1)

where x represents the real data, z represents the synthetic data, D(x) represents the
probability x came from real data, D(G(z)) represents the probability that z came
from synthetic data. This model trained to maximize the probability of D assigning
correct labels to the data [9].
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Generative Adversarial Networks (GANs) have proven successful not only for
image generation, as mentioned in the seminal work by [9], but also for video pre-
diction [27]. Researchers have expanded the capabilities of GANs to handle various
use cases. Schlegl et al. employed GANs for anomaly detection using unsupervised
medical image data [16], while Shafqat et al. utilized GANs to over-sample minority
class data for recommendation systems [24].

However, training GAN models to reach Nash equilibrium remains a challenge
[28]. Weight updates pose one of the difficulties. Weight clipping is a common ap-
proach to ensure that the Discriminator’s weights W lie within a compact space. But,
this method has drawbacks [11]. If the clipping parameter is large, training time in-
creases, while using a small clipping parameter can lead to gradient vanishing issues.
To improve stability during training, various techniques have been introduced by
Salimans et al. [28], for example: Feature matching (instead of directly maximizing
the output of the Discriminator, the Generator aims to generate data that matches
the statistics of real data) and virtual batch normalization (Input examples (x) are nor-
malized based on statistics collected from a reference batch of examples).

In [11], a new divergence proposing a new divergence to be minimized during
the training of GAN, that is Earth-Mover (or called Wasserstein-1) distance, denote
as W(q, p). It is the cost to transform distribution of q into distribution of p. Also,
Discriminator role is now called by Critic, as it is not function as classifier anymore.
Based on this adjustment, WGAN lost function to obtain [12]:

min
G

max
D∈D

Ex∼pr [D(x)] – Ez∼pg[D(z)] (2)

where D is the set of 1-Lipschitz function and Pg is the distribution defined by
z = G(z), z ∼ p(z). In [12], Gulrajani et al. proposed an alternative to enforce
the Lipschitz constraint by adding gradient penalty portion on the loss function of
WGAN. The objective function of WGAN-GP is [12]:

L = Ez∼pg[D(z)] – Ex∼pr [D(x)] + λEz∼pz[(||∇zD(z)||2 – 1)2] (3)

where λ is the weight decay of gradient penalty, (||∇zD(z)||2 – 1)2 is the function to
enforce Lipschitz constraint [12].

New proposed gradient penalty on the loss function helps Critic in the train-
ing process, as the optimal Critic forms straight lines with gradient norm 1 when
connecting two points from Pr and Pg.

Beside various algorithm of GAN, researcher also explore architecture of Dis-
criminator and Generator. For example, Bashar et al. used 3 layer of LSTM network
with depth 3 and 100 hidden units for Generator and 1 layer of LSTM with depth
1 for Discriminator [29]. Gulrajani et al. used Deep Convolutional GAN (DCGAN)
for both Discriminator and Generator with various size [12]. Another enhancement
of GAN by Lu et al. in [30] is cooperative GAN. In usual GAN algorithm, Dis-
criminator and Generator are against each other. In his model, Discriminator and
Generator are sharing the same purpose. It is founded that this appoarch help to
stabilize the training.
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2.3 GAN Based Anomaly Detection
The use of Generative Adversarial Networks (GANs) in anomaly detection has gained
popularity. There are several approaches to leveraging GANs for anomaly detection.
First, synthetic data generation. GANs can generate synthetic data to address imbal-
anced datasets by creating synthetic minority class data. This approach is demon-
strated in credit card fraud detection by Fiore et al. [15], who used GANs to generate
synthetic anomalous transactions. Second, Discriminator as Anomaly Detector: The
Discriminator in a GAN, trained on normal data, can produce distinct values when
fed anomalous test data, as described by Jiang et al. in [14]. However, this method
requires careful assessment because the Discriminator is originally trained to differ-
entiate between real and artificial data. This training helps the Generator create data
resembling real signals from the latent space, but it does not inherently detect anoma-
lies. Third, combining Discriminator and Generator. Schlegl et al. implemented this
approach in Anomaly GAN (AnoGAN) [16]. To identify anomalies, they combined
residual loss (the visual dissimilarity between generated data and actual test data) with
Discriminator loss (the feature extraction loss between real and generated data). This
method is useful when the training data consists of normal data. However, in prac-
tice, it is less straightforward than using the Discriminator alone, as the output of the
Generator is not an anomaly score.

3. Proposed Design and Methodology
In this section, we present the background of the proposed anomaly detection archi-
tecture based on LSTM-DC-WGAN-GP and its application in detecting anomalies
in an imbalanced SWaT dataset. This model utilizes the WGAN-GP algorithm, a
stable GAN method, to train the Critic and Generator, which are then used to iden-
tify anomalies in the dataset. The Critic and Generator architectures are built using
a combination of long-short term memory (LSTM) and deep convolutional neural
network (DC) methods.

LSTM was first introduced by Hochreiter et al. to improve the performance
of recurrent neural networks (RNNs) by addressing two main issues in the back-
propagation process: high error signals causing oscillation in weight updates and
vanishing error signals leading to no changes in weights [31]. LSTM has been suc-
cessfully applied to time series data, demonstrating its capability in various applica-
tions such as language modeling, speech-to-text transcription, machine-based trans-
lation [32], predicting the remaining usage life for UVLEDs [33], and predicting
traffic volume [34]. Given its ability to handle time series data, LSTM was chosen
for the SWaT dataset, which also comprises time series data. Detecting anomalies in
SWaT requires a model that can identify continuity in the data of each feature, a task
well-suited to LSTM.

The second component of our anomaly detection model is DC. DC, a subset of
deep learning, is capable of recognizing patterns in datasets [35]. Although DC is
predominantly applied to image tasks, its ability to study data patterns makes it appli-
cable to anomaly detection, such as in the SWaT dataset. As previously mentioned in
Section 2.1, the anomaly behavior in SWaT is not always a sudden drastic change to
a value outside the normal range; it can also be a gradual change in the recorded data
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Figure 1. Process Flow

(a change in pattern). During the learning phase, DC will study the normal patterns
in the data to recognize any deviations.

We implemented the LSTM-DC-WGAN-GP using PyTorch, a popular deep-
learning library in Python. The experiment flow is shown in Figure 1. In summary,
the process begins with pre-processing both the training and testing data. The train-
ing data is then used to train the LSTM-DC-WGAN-GP model. After training, the
model is applied to the testing data to generate anomaly detection results. These
results are then compared with those obtained using other methods and algorithms
based on standard metrics (Precision, Recall, and F1 scores).

3.1 Data Preprocessing
Training data starts being recorded from an empty state and requires 5 hours to
stabilize [22]. Consequently, the first 21,600 rows are removed, leaving 475,200 rows
of stable data. This data is then subdivided into smaller time series segments, with
each window having a length of 30 seconds. Within these time windows, the median
value of the data is taken as a representative measure. This approach is applied to both
training and testing data, reducing the dataset to 15,840 rows for training. The data
is then batched, with each batch having a shape of (51, 20), where 51 represents the
number of features and 20 represents the time length, corresponding to 600 seconds
of real data. The window capture is shifted by 10 to capture the next batch. As a final
step, each data feature is normalized to a range of 0 to 1 using the min-max method.
This procedure is applied to the testing data as well, with the difference being that
for testing data, each window length is 5 seconds, reducing the dataset from 449,919
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Figure 2. Critic Structure

Figure 3. Generator Structure

rows to 89,983 rows. The batch size for the test data remains (51, 20), where 20 now
represents 100 seconds of real data. The window capture is shifted by 20 to capture
the next batch, and the same min-max values used for normalizing the training data
are applied to the test data, under the assumption that the data range in the training
set covers all normal operations of the SWaT system.

3.2 System Architecture
In this study, we use combination of LSTM and convolutions layer. For Critic, in-
put data first connected to 3 2-dimension convolution layer. Each of this layer will
duplicated the channels: 1 to 64 on first layer, 64 to 128 on second layer, 128 to
256 on third layer. This arrangement help model to understand features of the data.
Convolution layer then followed by a LSTM layer. A LSTM layer help model to
understand temporal dependencies as the data is time series [36]. At every convolu-
tion layer, spectral normalization is used. Spectral normalization applied in Critics to
help to stabilize the training by normalizing the spectral norm of the weight matrices
[37]. And, activation function LeakyReLU with negative slope of 0.02 added.

For Generator, latent space is feed into a LSTM layer, then followed with 3 layer
of convolution transpose layer. First two convolution transpose layers followed by
batch normalization to help model stabilize the training process and ReLU activation
function. At the end of third convolution layer, a Sigmoid activation function is
applied as the data need to be normalized to 0 to 1.

Initial weights for all layers are using normal distribution with range 0.0 to 0.02
and biases are using 0. Graph of Critic and Generator structure can be seen in Figure 2
and Figure 3.

On the system algorithm, we are proposing LSTM-DC-WGAN-GP approach,
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Algorithm 1 LSTM-DC-WGAN with gradient penalty. Parameters used: m =
1582, epoch size = 100, α = 1e–5,β1 = 0.5,β2 = 0.99, nCritic = 5, λ = 10
Require: Batch size m, epoch size, the Adam hyper-parametersα,β1,β2, the number of Critic iterations

per Generator iteration nCritic, initial Generator parameters θ0, initial Critic parameters w0, λ.
1: for t = 1, ..., epoch do
2: for i = 1, ..., m do
3: for i = 1, ..., nCritic do
4: Sample real data x(i)

5: Sample random noise z(i)

6: Sample a random number ϵ ∼ U[0, 1]
7: x̂(i) ← ϵx(i) + (1 – ϵ)Gθ(z(i))
8: L(i)

C ← Dw(x̂(i)) – Dw(x(i)) + λ(||∇x̂(i) Dw(x̂(i))||2 – 1)2

9: wC ← Adam(L(i)
C , wct ,α,β1,β2)

10: end for
11: Sample random noise z(i)

12: L(i)
G ← –Dw(Gθ(z(i)))

13: wG ← Adam(L(i)
G , wGt ,α,β1,β2)

14: end for
15: end for

where Critic and Generator will against each other in the training process. In the
development of the LSTM-DC-WGAN-GP model, we follow a specific training
procedure. Initially, a batch of real data is sampled from the dataset, which is then
loaded into the Critic model alongside synthetic data generated by the Generator.
To enforce gradient penalty, we sample random numbers between 0 and 1 to cre-
ate interpolated data points between the real and synthetic data. The Critic’s loss is
computed based on its scores for real data, synthetic data, and interpolated data. This
process is iterated nCritic times, with the Critic adjusting its weights during each it-
eration. Finally, the Generator updates its weights, and the entire process is repeated
across multiple epochs More details on the algorithm and parameters can be found
below in Algorithm 1.

3.3 Anomaly Detection Method
Method used to detect anomaly in this study is a combination of 2 loss calculation.
These loss calculation will process further the output value of Critic and also Gen-
erator. First is inspired by [16]. This method used Critic loss or feature mapping of
Critic, which defined as:

LC(zγ) = 0.5 ∗ (C(xquery) – C(G(zγ))2 (4)

MSE is used in calculating Critic loss. The trained Critic is not determined
whether generated data fits to normal data, but instead it compares features of xquery
with the generated data G(zγ). Critic is act more on feature extractor instead of
classifier.

Second method is using Dynamic Time Warping (DTW) proposed by Berndt et
al. in [38]. DTW is a method to evaluate similarities between two time series. DTW
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Algorithm 2 Soft-DTW
Require: X, Y, smoothingγ ≥ 0, squared Euclidean distance δ.

1: r0,0 = 0; ri,0 = r0,j =∞; i ∈ [m], j ∈ [n]
2: for j = 1, ..., n do
3: for i = 1, ..., m do
4: r(i,j) = δ(Xi, Yj) + minγ(ri–1,j–1, ri–1,j , ri,j–1)
5: end for
6: end for

techniques is often used compare to general loss function such as mean squared error
(MSE) when it comes to time series data. How DTW works is not directly measure
distance between one value to another but its compares overall shapes of the data [39].
Cuturi et al. enhance DTW feature to be Soft-DTW. Given there are two time series
data x = (x1, x2,. . . , xn) and y = (y1, y2,. . . , m), the Soft-DTW distance is defined in
Algorithm 2. As part of the algorithm, squared Euclidean distance is calculated with
below formula [40]:

δ(X, Y) =
n∑

i=1
(xi – yi)

2 (5)

where x ∈ X, y ∈ Y and n are data shape of X.
Meanwhile, soft minimum distance (notated as minγ) from (ri–1,j–1, ri–1,j, ri,j–1) is

calculated with below formula [41]:

minγ(ri–1,j–1, ri–1,j, ri,j–1) = –γ((max z) + log
3∑

i=1
ezi–max z) (6)

where z1 = – ri–1,j–1
γ , z2 = – ri–1,j

γ , z3 = – ri,j–1
γ , max z = max{– ri–1,j–1

γ , – ri–1,j
γ , – ri,j–1

γ }, γ is
smoothing parameter.

Soft-DTW distance which notated asD between X and Y can be found at r(m, n).
In this research, Soft-DTW will be used to calculate distance between synthetic data
generated by trained Generator with the actual testing data.

Both error cannot directly combined. There are several steps to combine those as
proposed by Geiger et al. in [42]. First, normalized Loss of Critic LC, then multiply
it with Soft-DTW distance. as shown in function below:

L(xt) = ∥LC(xt)∥ ∗D(xt,G(zγ)) (7)

where LC(zγ) is the Critic loss and D(xquery,G(zγ)) is the soft-DTW distance be-
tween xquery and G(zγ).

After the anomaly score for each time step is calculated, threshold techniques
are applied to identify anomalous sequences. This method requires two parameters:
window size and step size, as mentioned in [42]. The window size refers to the sliding
window used to compare thresholds, while the step size represents the window size
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Figure 4. Anomaly Evaluation Method

per batch. In our research, we used a window size of 249 and a step size of 18. The
value of 18 was determined based on our testing to achieve the best results, with trials
conducted using step sizes of 14, 16, 18, 21, 24, 29, 37, 49, 74, and 149.

Within each sliding window, the anomaly score is compared with the mean and
standard deviation of the sliding window. If the anomaly score falls within one stan-
dard deviation from the window’s mean, it is categorized as normal data. This process
is repeated for all anomaly scores. Figure 4 illustrates how anomalies are predicted.

3.4 Evaluation Metrics
Standard metrics are being used to evaluate anomaly detection result of this model
[43].

Accuracy =
TP + TN

TP + TN + FP + FN
(8)

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

F1 = 2 × Precision × Recall
Precision + Recall

(11)

where TP is the correct detected anomaly (detection result labeled real anomaly cor-
rectly), FP is incorrect detected anomaly (detection result label anomaly for real nor-
mal data) and FN is incorrect detected normal (detection result label normal for real
anomaly data).
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The second metric used to evaluate the model’s performance is the Receiver Op-
erating Characteristics (ROC) curve. The ROC curve is utilized to assess the perfor-
mance of a binary classification model by comparing it to a random classifier, rep-
resented by the line y = x as a reference [44]. If the model’s ROC points are located
towards the northwest of the graph, it indicates that the model is producing good
results and is performing better than the random classifier.

4. Evaluation
This section presented the evaluation of proposed LSTM-DC-WGAN-GP based
model to detect anomaly on SWaT dataset. This model will be evaluated based on
evaluation metrics in Section 3.4 and compare it with other techniques as well. Hy-
per parameters setting are also important to be carefully asses, as they directly affect
performance of the model.

4.1 Model Training
During the training phase, several architectures for the Critic and Generator were
tested. Different architectures can be found in Table 1.

First model, the Critic had a simple architecture with 2 DC layers and 1 LSTM
layer, while the Generator had a complex architecture with 1 LSTM layer and 4 DC
layers. This model resulted in the Generator learning quickly, as indicated by the
loss moving in a negative direction. However, the Critic was unable to challenge the
Generator effectively, as indicated by its fluctuating loss and increasing value.

Second model, the Critic was made complex with 3 DC layers and 2 LSTM layers,
while the Generator was made simple with 1 LSTM layer and 2 DC layers. In this
model, the Critic was able to distinguish real and fake data features faster, as indicated
by its loss moving towards the negative direction. However, the Generator struggled
to keep up, with its fluctuating loss moving towards the positive direction.

Third model, both the Critic and Generator were made complex, with the Critic
having 4 DC layers and 2 LSTM layers, and the Generator having 2 LSTM layers
and 4 DC layers. This complexity did not result in stable training for the model

Stability was achieved with a balanced architecture, where the Critic had 3 DC
layers and 1 LSTM layer, and the Generator had 1 LSTM layer and 3 DC layers.
This balanced architecture allowed for stable training and prevented the model from
overfitting.

Figure 5 shows the loss of the Critic and Generator during the training phase. A
total of 1,582 datasets were used per iteration, with each epoch taking approximately
15 minutes to complete. The configurations are illustrated in Figure 2 and Figure 3,
with hyper-parameters detailed in Algorithm 1.

4.2 Model Testing
After 100 epochs, the models for the Critic and Generator are loaded into the test
environment, and a dataset comprising 4,499 batches is processed, with each batch
containing 100 seconds of data. The model is tasked with detecting any anomalies
in the batched data. Figure 6 shows the resulting confusion matrix.
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Table 1. Comparison of Critic and Generator Loss During Training

No Critic Generator Critic Loss Generator Loss

1 Simple (3) Complex (5) Fluctuate, move to
positive direction

Move to negative di-
rection

2 Complex (5) Simple (3) Move to negative di-
rection

Fluctuate, move to
positive direction

3 Complex (6) Complex (6) Fluctuate Fluctuate

4 Simple (4) Simple (4) Stable Stable, move to neg-
ative direction
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Figure 5. Loss of Critic and Generator on Training

Based on the results, the model achieved an accuracy of 0.9546, a precision of
0.9086, a recall of 0.6654, and an F1 score of 0.76818. Two components to highlight
here are false positives (FP) and false negatives (FN). On the FP side, we observed
that sensor measurements require time to stabilize after an attack, although iTrust
has already marked them as normal. For example, during an attack on FIT-401, as
shown in Figure 7, the attacker changed the recorded value to 0. After the attack,
the sensor data continued to show 0 for 40 more seconds before returning to normal.
This causes the model to mark it as an anomaly, even though the data is flagged as
normal.

Different attack behaviors were observed, such as in Attacks 12 and 36, where
the level sensor readings decreased over time. This type of error is missed by our
model because the data is batched in 30-second intervals, and the median value is
taken as representative. This makes gradual decreases difficult to detect, as the model
may interpret them as expected behavior. Another type of attack behavior involves
directly changing the sensor and actuator values outside their normal range, which is
easier to catch compared to cases where the values remain stagnant within the normal
range, contributing to FN predictions.

In addition to standard metrics, the model’s performance is evaluated using the
ROC curve. To plot the ROC curve, the threshold value is adjusted to achieve true
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Figure 6. Confusion Matrix

0 5 10 15 20 25 30 35 40 45 50 55 60
–1

–0.5

0

0.5

1

1.5

2

Time

Re
co

rd
ed

Va
lu

e

Anomaly
Recovery
Normal

Figure 7. Attack on FIT-401

positive rate (TPR) and false positive rate (FPR) values approaching 0 and 1. For our
model, we used 12 points on the graph, changing the threshold value by 0.5 starting
at 0. As shown in Figure 8, all points from our model are located above the y=x line,
which represents a random classifier. This indicates that our model performs better
than a random classifier, as stated in [44].

4.3 Model Comparison
Research on finding anomalies in SWaT datasets have been done several times, namely:
K-Nearest Neighbors (KNN) [26], Feature Bagging (FB) [26], Autoencoders (AE)
[26], EGAN [26] and GAN-AD [45]. Comparison of evaluation result of proposed
model with the other model shown in Table 2. Comparing to above model LSTM-
DC-WGAN-GP model able to peform better in F1 Score, Precision and Result.

K-Nearest Neighbors (KNN) operates based on the distance between the test data
and the n-nearest members of a class [46]. This method requires a sufficient amount
of anomaly class data to effectively train the KNN model. In the case of SWaT, there
is no anomaly data in the training set, which explains why KNN did not perform
well. Additionally, the Fast Fourier Transform (FB) did not perform well, as it was
initially designed for uni-variate data [26], while SWaT is multivariate.



298 J. M. Kevin et al.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

Tr
ue

Po
si

tiv
e

Ra
te

Model’s ROC Curve
Random Classifier

Figure 8. ROC Curve

Table 2. Comparison of anomaly detection result on SWaT dataset with different methods

Method F1 Score Precision Recall

KNN [26] 0.350 0.348 0.348

FB [26] 0.360 0.358 0.358

AE [26] 0.520 0.516 0.516

EGAN [26] 0.510 0.405 0.677

GAN-AD [45] 0.750 0.857 0.636

LSTM-DC-WGAN-GP 0.768 0.909 0.665

Improvement can be seen with models using deep learning methods, such as
Autoencoders (AE), Enhanced GAN (EGAN), and GAN-based Anomaly Detection
(GAN-AD). AEs are capable of handling multivariate data and measure anomalies
based on reconstruction error [45]. GAN-based methods also show improvements
in their scores. However, compared to these models, the use of LSTM-DC in the
architecture and WGAN-GP in the algorithm provides better results. The gradient
penalty component helps keep the Critic’s loss within Lipschitz continuity, resulting
in a stable learning process, which leads to more effective weight updates. As shown
in Figure 5, the Critic’s loss value stabilizes starting from epoch 13.

5. Conclusion
In our research, we present an LSTM-DC-WGAN-GP model designed for detect-
ing anomalies in unbalanced multivariate time series data. We evaluate this model
using the SWaT dataset. The architecture of our model is based on two key compo-
nents: Long Short-Term Memory (LSTM) for capturing sequence data correlations
and Deep Convolutions (DC) layers for learning feature correlations in multivariate
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data. Additionally, we employ the Wasserstein Generative Adversarial Network with
Gradient Penalty (WGAN-GP) algorithm, which has demonstrated effectiveness in
anomaly detection scenarios.

Our approach involves training both the Critic and Generator components with
normal data. During training, the Generator learns to create synthetic data that aligns
with the distribution of normal data, while the Critic focuses on understanding the
value distribution of each feature. Consequently, when anomalous data is introduced
to the model, it can accurately detect and label it as an anomaly, leveraging its un-
derstanding of the normal data distribution.

Compared to previous approaches, our LSTM-DC-WGAN-GP model exhibits
improvements across key evaluation metrics. It achieves accuracy of 0.9546, precision
of 0.9086, recall of 0.6654, and F1 score of 0.76818, outperforming other methods
such as K-Nearest Neighbors (KNN), Feature-Based (FB) approaches, Autoencoders
(AE), Energy-based GANs (EGAN), and GAN-based Anomaly Detection (GAN-
AD).

Looking ahead, further investigations can explore training on smaller time frames
to capture shorter anomaly duration. Additionally, experimenting with hyper-
parameters and model architecture adjustments can enhance feature extraction capa-
bilities and enable the model to provide probabilities indicating which features con-
tribute to anomalies.
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