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Abstract
Indonesia has set a target to reduce emissions by 29% or 835 million tons of CO2 by 2030.
The building sector is one of the largest contributors to emissions in Indonesia. To reduce
these emissions, the Indonesian government has issued energy conservation regulations
requiring each sector to reduce energy consumption. According to Government Regulation
No. 33 of 2023, energy conservation is mandatory for energy users in the building sector
who use energy sources equivalent to or greater than 500 tons of oil equivalent. On the other
hand, the comfort of the building’s users must be considered in the energy conservation
of a building. User comfort impacts their productivity and efficiency inside the building.
Therefore, optimization is essential in order to find optimal values for energy use and user
comfort. In this study, we used the evolution mating algorithm (EMA) to find optimal
values for energy use and user comfort in office buildings in a tropical-climate country. The
mathematical model from the previous research has been updated to perform optimization in
tropical-climate countries. The temperature and lighting variables that will affect the thermal
and visual comfort of the user inside the building are used to optimize the use of energy.
The aim of this research is to determine and analyze the optimal values of temperature and
lighting to generate the optimal value of energy use and user comfort in a tropical-climate
country. This study compares the state of an office building before and after optimization.
The results prove that conditions after optimization using EMA succeeded in reducing
energy consumption and increasing user comfort inside office buildings in tropical-climate
countries. The temperature and lighting variables after optimization are at the optimal point
of 23 oC and 358.6 lux, which are in line with Indonesia Government Regulations.
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1. Introduction

Indonesia has set a target to reduce emissions by 29% or 835 million tons of CO2 under
a business as usual (BAU) scenario by 2030 [1]. This target was increased in 2023 to
32% or 912 million tons of CO2 by 2030. These targets align with the Nationally De-
termined Contributions (NDC) under the Paris Agreement, which emphasizes stronger
commitments to mitigating climate change. The building sector is one of the largest
emitters of greenhouse gases in Indonesia [2]. The Indonesian government is working
to reduce these emissions by enacting energy conservation regulations, requiring each
sector to conserve energy to support the government’s efforts reducing CO2 emissions
[3]. According to Government Regulation No. 33 of 2023 on Energy Conservation,
energy conservation activities are mandatory for energy users in the building sector
who use energy sources equal to or greater than 500 Tons of Oil Equivalent (TOE).
One way to conserve energy is by implementing energy-efficient technologies [4]. On
the other hand, the comfort of building users must not be compromised when it comes
to energy conservation in buildings. Factors determining user comfort include thermal
comfort and visual comfort, which are part of indoor environmental quality (IEQ).
User comfort directly impacts their productivity within the building. A 3% increase in
productivity has been achieved with comfortable and high-performance buildings [5].
Building user productivity also increases with improved IEQ aspects such as thermal and
visual comfort [6]. This indicates that building users are more enthusiastic, productive,
and efficient when IEQ aspects are enhanced, leading to optimal user comfort [7].

This study aims to optimize energy use without compromising user comfort within
the building. Optimization is performed using the Evolution Mating Algorithm (EMA),
a part of the Evolutionary Algorithm (EA) developed based on natural selection and
genetics. Previous research used EA to optimize the use of hybrid renewable energy
systems (HRES), achieving optimal results in its application, where EA was used to
determine multi-objective functions such as minimizing cost, maximizing performance,
and maximizing reliability [8]. Previous studies also have tested energy use optimization
using and comparing Genetic Algorithm (GA) with other algorithms such as Particle
Swarm Optimization (PSO), Differential Evolution (DE), Ant Colony Optimization
(ACO), and Biogeography-Based Optimization (BBO). It has been proven that GA has
the best performance with optimal results [9]. Other studies also demonstrated that GA
produces optimal results in energy consumption efficiency without compromising user
comfort [10]. Recent studies have shown that EMA yields optimal results in optimizing
energy consumption and user comfort in smart buildings [11] where EMA was compared
with other EA algorithms like DE (Differential Evolution) and BBO. In recent studies
[12][13], EMA has also been combined with deep learning to optimize the weight of
parameters needed to provide optimal results.

Another study [14], EMA was combined with clustering, named as an adaptive
clustering-based evolutionary algorithm (ACBEA), which was used to schedule energy
usage and reduce electricity costs.

Previous studies [10], [11], using the EMA optimization algorithm were conducted
in coldclimate countries. It is related to the temperature variable, where the optimal
temperature inside the building will definitely be higher than the temperature outside
the building (heating systems).
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Further research on optimization using EMA in tropical-climate countries has not
been done. Therefore, this study aims to determine and analyze the optimal values of
temperature and lighting to generate the optimal value of energy use and user comfort
in a tropical climate country using the EMA optimization algorithm. Mathematical
models such as the formula for the calculation of energy and gain user comfort (GUC)
have been updated to perform optimization with EMA in tropical climate countries. The
gain user comfort (GUC) variable is used to indicate user comfort inside the building,
and the gain energy saving (GES) variable is used to indicate the total use of energy.
The temperature and lighting variables that will affect the thermal and visual comfort of
the user inside the building are used to optimize the use of energy.

This research compares and analyzes two conditions of buildings, which are before
and after optimization using EMA. Optimization will be done on energy use, lighting,
temperature, GUC, and GES. The results of this study prove that conditions after
optimization using EMA succeeded in reducing energy consumption and increasing
user comfort inside office buildings in tropicalclimate countries. Discussions about
how optimization using EMA is done will be discussed in the next section of this
journal, which is structured as follows: Section 2 covers theories related to energy use
optimization and user comfort in buildings using EMA. The mathematical model and
optimization algorithm design are discussed in Section 3, followed by the discussion of
research results in Section 4. The journal concludes with a summary in Section 5.

2. Energy Usage and User Comfort Optimization with Evolution Mating Algorithm
2.1 Building Energy Management System
Electric energy consumption in Indonesia for the years 2022, 2023, and 2024 are 1,173
kWh per capita, 1,285 kWh per capita, and 1,408 kWh per capita, respectively [15].
Similar to Indonesia, global electricity consumption has also been steadily increasing
year by year, as shown in Figure 1 [2].

Figure 1. Global Electrical Energy Usage in Various Sectors

The three largest electricity-consuming sectors are the residential, industrial, and
commercial sectors. The residential sector is one of the largest energy consumers, with a
consumption of 421,887 Terajoules (TJ) or approximately 117,190 GWh. Buildings are
a significant part of the residential sector, contributing about 36% of global electricity
consumption [16].
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Given the increasing electricity consumption, particularly in the building sector,
buildings must implement energy management systems to ensure efficient energy use
in accordance with Government Regulation No. 33 of 2023. The implementation of
energy management systems in buildings, such as building energy management systems
(BEMS), is considered an effective program to reduce electricity consumption in the
residential, industrial, and commercial sectors [17].

Reducing electricity consumption has become very important, and energy con-
sumption in the building sector plays a crucial role in energy efficiency [18]. Electricity
consumers are also beginning to adopt energy management systems driven by several
factors, such as rising electricity prices and potential financial incentives [19].

Over time, BEMS has evolved year by year. Today, smart buildings are becoming
a target for new construction, especially in urban areas. The design concept of a
smart building energy management system can be seen in Figure 2. The fundamental
difference between BEMS and smart BEMS lies in the communication between building
users and building equipment, such as cooling systems and lighting. Cooling systems
consume a significant amount of electricity, making them critical for energy efficiency
efforts [20].

Figure 2. Conceptual Design of Smart Building Management System

This communication is facilitated through sensors, actuators, the internet (wireless
communication), and an optimization system. In this study, the optimization system
uses the EMA (evolution mating algorithm) optimizer, which considers user-desired
parameters according to applicable standards. The optimization system collects historical
and current data from sensors installed on electronic devices in the building and performs
optimization based on constraints and user-desired parameters.
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The optimization results are then sent to the control system, which then commu-
nicates with the actuators to produce outputs that align with the optimization results.
The communication between actuators and controllers is wireless via the internet. This
ensures that energy use in the building is more controlled and aligns with the comfort
parameters of the building users.

2.2 Evolution Mating Algorithm
EMA is part of the Evolutionary Algorithm (EA), which is a nature-based algorithm
inspired by natural processes. The structure diagram of EMA can be seen in Figure 3.
The inspiration for the Evolution Mating Algorithm is also derived from the mating
analogy of organisms, based on the Hardy-Weinberg principle. The mating analogy
conceptualized in EMA is a general mating analogy and is not specific to any particular
organism. In studies on specific organism mating behaviors [21], it has been found that
it is very challenging to precisely follow mating behaviors due to the numerous natural
strategies involved in the mating of each organism [11].

The Evolution Mating Algorithm (EMA) is chosen for several advantages over other
evolutionary algorithms, including:

(a) Ability to effectively search for solutions. EMA achieves this by splitting the popula-
tion size that enters the algorithm into two parts.

(b) Faster data processing capability. This occurs because evaluation is performed
immediately after the mating process, eliminating the need for sorting.

(c) Lower complexity. The complexity of EMA only depends on the population size, the
number of dimensions, and the number of iterations. In other words, the complexity
can be adjusted according to the problem being optimized

EMA can be used for various optimization needs and is applied in this study to opti-
mize energy usage and user comfort. The working mechanism of the EMA algorithm
begins with the initiation process, selection of individuals for mating, and ends with
the formation of new offspring. Each process in EMA’s workflow requires variables
and parameters discussed in Section 3. All input variables for temperature and lighting
are divided into father and mother populations during the initiation phase. Identifying
the best temporary offspring is done at the initiation stage by evaluating the objective
function.

Mating is then carried out by combining the father and mother populations with
their alleles, and the resulting offspring are evaluated and compared with the best
temporary offspring from the initiation stage. The best offspring then undergo an
exploration phase. If the number of iterations is fulfilled, the best offspring represent the
optimal values for temperature and lighting. Energy consumption, GUC (Gain User
Comfort), and GES (Gain Energy Saving) calculations will then be conducted using the
optimal temperature and lighting values derived from the EMA optimization algorithm.

The phase of optimization using EMA until producing a new offspring will be
described in the next subsection.
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Figure 3. Structure Chart of Evolution Mating Algorithm

2.2.1 Initialization Population
The initiation stage is the initial phase in optimization using EMA. The input data,
which constitutes the population in the EMA algorithm, will be organized into father
and mother matrices. From these, the temporary best offspring will be determined
by the existing population. The temporary best offspring are calculated by evaluating
the objective function value for each population. The best population is the one that
produces the optimal objective function value, depending on the research objective. The
best population will be the optimal solution from the two groups of father and mother
matrices and will be retained for subsequent processes [9]. The form of the father and
mother matrices satisfies equations (7) and (8) in Section 3.

2.2.2 Selection for Mating
The next stage in optimization using EMA is population selection for mating. The
population selection process for mating at this stage is conducted randomly according to
the HardyWeinberg principle. This principle is used in the evolution mating algorithm,
which relates the allele and genotype frequencies of male and female populations in
random mating [22]. Figure 4 provides a simple illustration of the Hardy-Weinberg
principle. The two alleles in Figure 4 represent alleles inherited from the father and
mother, respectively. The expected genotype frequency from this mating is homozygous
offspring. These offspring are obtained from the mating of the father’s allele frequency
with the father’s allele frequency, represented by P2 , or from the mating of the mother’s
allele frequency with the mother’s allele frequency, represented by q2 . In addition to
homozygous offspring, there are also heterozygous offspring resulting from the mating
of the father’s and mother’s allele frequencies, represented by pq.

The EMA algorithm uses the Hardy-Weinberg principle approach to determine the
best new offspring from each population, a process known as exploitation.
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Figure 4. Ilustration of the Hardy-Weinberg Principle

The form of the population selection for mating equation meets equation (9) in
Section 3. Imates in this equation can be interpreted as the total variation in mating
success, representing separate selection probabilities arising from variations in sex ratio,
mate availability timing, and spatial availability of mates [23].

2.2.3 Offspring Forming
After the new offspring are formed, they must be tested against the temporary best
values stored during the initiation process and followed by the exploration process. The
process of testing the offspring values against the temporary best values meets equation
(11) in Section 3. Meanwhile, the exploration process on the offspring values meets
equation (13) in Section 3. There are two parameters for testing with the temporary
best values and the exploration process, namely Cr and r, where Cr is the crossover
probability value that randomly decides whether to swap each component with the best
solution or not [9].

After the new offspring are formed, they must be tested against the temporary best
values stored during the initiation process and followed by the exploration process. The
process of testing the offspring values against the temporary best values meets equation
(11) in Section 3. Meanwhile, the exploration process on the offspring values meets
equation (13) in Section 3. There are two parameters for testing with the temporary
best values and the exploration process, namely Cr and r, where Cr is the crossover
probability value that randomly decides whether to swap each component with the
best solution or not [9]. The parameter r is used to determine whether exploration
will be conducted in that iteration or not. Environmental effects in the evolution of
mating, such as foraging and facing predators, cannot be avoided, which is then referred
to as the exploration process [9], [24]. The decision whether an organism will flee
or face a predator needs to be considered, where parameter r will play a role in this
decision-making process. If the fitness function value is better after exploration, it can
be concluded that the organism survived after facing the predator. Conversely, if the
fitness function value is worse after exploration, it can be concluded that the organism
died after facing the predator.
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3. The Design of Evolution Mating Algorithms and Mathematical Model
This section will discuss how data is collected and processed into the EMA optimization
algorithm to produce optimal temperature and lighting values. The imputation method
will be used for data cleaning during the data retrieval and preparation stage. The results
of the EMA optimization algorithm will be quantitatively analyzed by comparing the
pre-optimization and post-optimization results. Data visualization in the form of graphs
will be used to easily observe the differences between the research results.

Figure 5. Research Flowchart

This study was conducted using quantitative analysis by comparing the values of
energy consumption, temperature, lighting, GES (Gain Energy Saving), and GUC (Gain
User Comfort) before and after optimization. The research began with data retrieval &
collection. Data retrieval involves collecting the required data for this research from the
obtained dataset, specifically focusing on temperature and lighting data. The dataset
for temperature and lighting was sourced from measurement research conducted in an
office building in Thailand [25]. The acquired dataset will then undergo cleaning using
the imputation method, which is referred to as the data preparation stage.
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After data retrieval and preparation, data understanding was performed, followed by
the optimization of temperature and lighting. The optimal temperature and lighting
values were obtained using the Evolution Mating Algorithm optimization algorithm,
conducted with Matlab R2022A software. After obtaining the optimal values, a quanti-
tative analysis was performed. The research flowchart is shown in Figure 5.

3.1 Data Retrieval & Processing
This section will discuss how data is collected and processed for subsequent optimization
using the EMA algorithm. There are two stages of data processing before it is used for
the EMA optimization algorithm in this study which are data retrieval & preparation,
and data understanding.

The first stage in the data processing is data retrieval & preparation, which focuses
on temperature and lighting data. The data was obtained from previously conducted
measurements [25] which were conducted in a seven-story office building with a total
area of 11,700 m2 , located in Bangkok, Thailand. The data measurements used in this
research were from May 2019, focusing on the 7th floor of the building, where data on
temperature, lighting, and electricity consumption were collected every minute. The
dataset for May 2019 and the 7th floor was chosen because it had fewer missing values
compared to other months and floors. The total missing values for May 2019 were
1.68%, or 752 minutes out of a total of 44,640 minutes in May 2019. After the data
retrieval stage, data preparation is conducted by cleaning the data using the imputation
method. Imputation methods were used to fill in these missing values since the missing
values were below 30%[26]. Next, the average values were taken to produce hourly
data for May 2019. A sample data snippet after the data retrieval & preparation stage
can be seen in Table 1.

Table 1. Data Snippet after Data Retrieval & Preparation Stage

The second stage in data processing is data understanding. In this stage, the average
electrical power required for each increase or decrease in temperature and lighting will
be determined for all hourly data in May 2019. The results of the data understanding
stage are the PT and PL values in Table 4, which are 6.5 kW and 0.22 kW, respectively.
It should be noted that the data required for the EMA optimization algorithm includes
temperature, HVAC load consumption, lighting, lighting load consumption, and total
lighting & HVAC load consumption, as shown in Table 1.
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Another important aspect to consider is the missing values caused by sensor or
communication network errors. Data cleaning methods using machine learning might
be necessary if the missing value rate exceeds 30% [26].

3.2 Mathematical Model Design
The input and output variables in this study are shown in Table 2 and Table 3. The
parameter values used in this study are provided in Table 4.

Table 2. Input Variables

Table 3. Output Variables

Table 4. Parameter Values

The values of PT and PL in Table 4 were determined during the data understanding
stage, as shown in Figure 5. These values were derived from the average fluctuation
in power needed for each degree of temperature and each lux of lighting. All the
aforementioned variables and parameters will be processed into the algorithm model
according to the objective function in this study, as shown in equation (1).
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Maximize {(αUC × GUC) + (αES × GES)} ϵ [0, 1] (1)

User comfort values and energy saving values will be balanced in this study, so the weight
for user comfort (αUC) and the weight for energy efficiency (αES) in equation (1) are
both 0.5. The most optimal GUC and GES values are those that make the objective
function approach 1.0. To determine the user comfort value and energy saving value,
the following mathematical model will be used:

GUC = βTx
(

Tmax – To
∆T

)
+ ∆βLx

(
1 –
(

Lmax – Lo
∆L

)2
)

› [0, 1] (2)

Where:
Tmax = Maximum temperature based on user preference ( oC).
Lmax= Maximum lighting based on user preference (lux)
∆T= The difference between the maximum and minimum values of the temperature

preferences of building users (oC).
∆L = The difference between the maximum and minimum values of the lighting

preferences of building users (lux)

GES =

(
1 –
(

EO – Emin
∆E

)2
)

› [0, 1] (3)

Where:
Emin = Minimum energy usage (kWh).
EmaxE = Maximum energy usage (kWh).
∆E= The difference between the maximum and minimum values of energy usage

(kWh). To determine the values of Eo, Emin, and Emax, the following equations will
be used:

EO = PTx (TC – TO) + PLx (LO – LC) + PAx (AO – AC) (4)

Emin = PTx (TC – TMax) + PLx (LMin – LC) + PAx (AMin – AC) (5)

Emax = PTx (TC – TMin) + PLx (LMax – LC) + PAx (AMax – AC) (6)

Using equations (2) and (3), the objective function value in equation (1) can be deter-
mined.
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3.3 Optimization Algorithm Design

Evolution mating algorithm (EMA) optimization design is based on the flowchart in
Figure 6 below.

Figure 6. Evolution Mating Algorithm Flowchart

Broadly, the optimization process with EMA involves three stages: initiation, mating,
and offspring formation. The offspring values are evaluated at each stage. Exploration is
also carried out to ensure that the obtained optimal values remain more optimal compared
to other temperature and lighting values. The output of the EMA optimization algorithm
in this study is the optimal temperature and lighting values, which are 23°C and 358.6
lux, respectively. Each stage of the optimization process with EMA will be discussed in
detail in the following sections.

3.3.1 Initiation Process

The input population will be divided into two groups: pop_dad for the father population
and pop_mum for the mother population. These two groups will form matrices that
satisfy equations (7) and (8) below:

pop-dad =


x1

1 · · · x
1
d

...
. . .

...

x
1
n
2 · · · x

d
n
2

 (7)
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pop-mam =

x
1
n
2 + 1 · · · x

d
n
2 + 1

...
. . .

...
x1

n · · · xd
n

 (8)

Where:
d = dimension of the problem.
n = number of populations.
Some initialized parameters can be seen in Table 5 below:

Table 5. Input Parameter

Based on Table 5, the number of iterations in this study is 100, and 744 populations
representing 744 hours in May 2019 will be tested. The number of dimensions refers to
the number of variables to be optimized, which are temperature and lighting; therefore,
the number of dimensions in this study is 2.

3.3.2 Offspring Selection for Mating
The matrices pop_dad and pop_mum obtained from the initiation process will be
randomly mated based on the adoption of probability or the chance for sexual selection,
denoted as Imates in equation (9) below [27].

Imates = 1 +
[
var
(

XT
m,∗
)

– var
(

XT
f ,∗

)]
(9)

Where:
var
(
XT

m,∗
)

= variance of the male that will be mated in iteration T.

var
(

XT
f ,∗

)
= variance of the female that will be mated in iteration

Xm∗ dan Xf ,∗= selected male and female candidate individuals/solutions.

If var
(

XT
f ,∗

)
> var

(
XT

m,∗
)
, then Imates will be negative, meaning that the female’s

values
(

XT
f ,∗

)
will be dominant in producing offspring. Conversely, if var

(
XT

m,∗
)

>

var
(

XT
f ,∗

)
, then Imates will be positive, meaning that the male’s values (XT

m,∗) will be
dominant in producing offspring [11].

xT
child

{
p. ∗ XT

m,∗ + q. ∗ XT
f ,∗ for Imates ≥ 0

p. ∗ XT
f ,∗ + q. ∗ XT

m,∗ for Imates < 0
(10)
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Where: p = normally distributed random variable, alleles inherited from the father and
mother. q = 1 - p, alleles inherited from the father and mother. If the fitness function
value of the offspring is better than that of their parents, the offspring value (xT

child ) can
be replaced by the values of their parents. Good offspring are also influenced by the
best individuals stored during the initiation process.

Therefore, the results from equation (10) will be processed with the best solution at
certain iterations according to equation (11) below.

XT+1
child = K. ∗ XT

child,j + Xbest
j . ∗ (1 – K) , j = 1, 2, ...d (11)

Where:
XT

child,j = j-th offspring individual at iteration T.

Xbest
j = j-th best individual.

K = random distribution.
The random distribution for the value K satisfies equation (12) below.

K = rand (1, d) < Cr (12)

From equation (12), Cr is the algorithm’s decision parameter for determining whether
the algorithm produces the best solution. The offspring produced in equation (11) will
be tested and compared with the fitness values of the parents. If the offspring’s fitness
value is better, the offspring will replace the parents. The parameter value Cr in this
study is 0.8, which was obtained from testing Cr values ranging from 0 to 1, and a value
of 0.8 resulted in fewer iterations and more optimal fitness function values.

In addition to being influenced by the best individuals and the Cr value, the offspring
are also affected by the exploration process, which satisfies equation (13). This is intended
to account for external factors, such as environmental effects when facing predators, in
the evolution mating algorithm. This analogy is drawn from natural environmental
conditions.

XT+1
child = rand (1, d) . ∗ Xbest

j for r < ϵ [0, 1] (13)

In this study, the optimal parameter value r in equation (13) was found to be 0.2.
This value was obtained from testing r values ranging from 0 to 1, where a value of 0.2
resulted in fewer iterations and more optimal fitness function values.

4. Results and Discussion
This section presents several key points, including a comparison of the office building
conditions before and after optimization using the Evolution Mating Algorithm. The
discussion section will compare the results of this study with previous research.

4.1 Pre-Optimization Conditions
This subsection discusses the conditions of the office area in the building before op-
timization, covering power consumption, temperature, lighting, Gain User Comfort
(GUC) values, and Gain Energy Saving (GES) values.
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Figure 7. Power Consumption before Optimization

Figure 7 shows the power consumption of the 7th floor office area in May 2019.
The building’s operational hours are from 08:00 AM to around 08:00 PM. The power
consumption measurements in Figure 7 are derived from the sum of the power con-
sumption of the Air Conditioning (AC) and lighting. It can be seen that the highest
energy usage on the 7th floor is 41.66 kWh. The power consumption pattern in this
office area indicates low consumption during lunch hours and high consumption during
working hours. Power consumption approaches 0 kWh on Sundays and holidays, with
holidays in May falling on May 9 and May 20. The total power consumption in May
2019 for the 7th floor office area is 9775.6 kWh.

Figure 8. Temperature before Optimization
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Figure 8 shows the temperature of the area before optimization. Based on the
measurements in Figure 8, the average office area temperature ranges from 20°C to
25°C, with some weeks recording temperatures below 20°C. The lowest measured
temperature is 16.05°C, and the highest is 32.39°C. The temperature fluctuation pattern
in Figure 8 aligns with the power consumption pattern where during the lunch hours
the cooling system is not being operational and causing room temperatures to rise to
around 25°C. Additionally, room temperatures rise reaching up to 32.39°C when the
office is not being operational, from approximately 08:00 PM to 08:00 AM each day.

According to the Indonesian Ministry of Manpower Regulation No.5 of 2018
concerning Occupational Safety and Health in the Work Environment, Article 40
Number 3 [28], he comfortable room temperature range should be maintained between
23°C and 26°C. This indicates that the office area temperature does not meet the
standard at certain times which will disrupt the comfort of building users.

Figure 9 shows the lighting before optimization. Based on the measurements in
Figure 9, the average office area lighting ranges from 200 to 300 lux during office hours.
The lighting pattern in Figure 9 also aligns with the power consumption pattern where
during lunch hours the lighting will be turned off causing the room lighting to drop
below 20 lux. When the office is not being operational from around 08:00 PM to 08:00
AM the lighting also drops to 0 lux.

According to the Indonesian Ministry of Manpower Regulation No.5 of 2018
concerning Occupational Safety and Health in the Work Environment, Annex No. 2
[28], the lighting range 0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 Temperature ( oC) Date
& Hour that must be maintained is between 300 and 500 lux. The measurements in
Figure 9 show that lighting is below 300 lux almost all the time. This indicates that
the office area lighting does not meet the standard, which will disrupt the comfort of
building users.

Figure 9. Lighting before Optimization
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Figure 10. Gain Energy Saving (GES) Values before Optimization

Figure 10 shows the graph of population against GES (Gain Energy Saving) values,
where the method to obtain the GES value is explained in Section 3. The optimal
temperature and lighting values used to obtain GES are based on measured values. The
X-axis in Figure 10 0.0 50.0 100.0 150.0 200.0 250.0 300.0 350.0 Lighting (Lux) Date
& Hour represents the population size, corresponding to the number of hours in May
2019, which is 744 hours (31 days), making the maximum population size in this study
is 744. The Y-axis in Figure 10 represents the GES values, which range from 0 to 1,
with the maximum GES value being 1 and the minimum value being 0.

GES indicates the energy saving index. The GES values in Figure 10 show that the
energy usage in the 7th floor office area ranges from 0.5 to 1.0. The GES value pattern
in Figure 10 also follows the power consumption pattern in Figure 7, where during
lunch hours and nonoperational hours, the GES value reaches 1.0. This indicates optimal
energy use during these hours since the cooling and lighting systems are not turned
off, resulting in power consumption dropping to around 0 kW to 5 kW. However, the
GES value ranges from 0.5 to 0.9 during operational hours, from 08:00 AM to 12:00
PM and 01:00 PM to 08:00 PM. This occurs because the cooling and lighting systems
are turned on during operational hours.

Figure 11. Gain User Comfort (GUC) Values before Optimization
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Figure 11 shows the graph of population against GUC (Gain User Comfort) values,
where the method to obtain GUC is explained in Section 3. The optimal temperature
and lighting values used to obtain GUC are based on measured values. GUC indicates
the user comfort index where values closer to the maximum of 1.0 indicate higher user
comfort within the building. Conversely, values closer to the minimum of 0.0 indicate
lower user comfort. The user comfort range for temperature and lighting adheres to the
standards specified in the Indonesian Ministry of Manpower Regulation No.5 of 2018
[28] as previously mentioned.

The GUC values in Figure 11 are mostly at the minimum point of 0.0. There are
only two points where the GUC values are not at the minimum which are at the 325th
population on May 14 at 12:00 PM and at 153rd population on May 7 at 08:00 AM,
with GUC values of 0.42 and 0.35 respectively. This is because, at these two times, the
temperature and lighting values were within the specified standard range. Apart from
populations 325 and 153, the GUC values remain at the minimum point of 0.0. This
aligns with the room temperature values being below 23°C in Figure 8 and the lighting
values being below 300 lux in Figure 9.

Because the temperature and lighting values are mostly below the standards, the
GUC values are predominantly at the minimum point of 0.0. This indicates that the
office building users are not experiencing optimal comfort levels. Therefore, an approach
is needed to optimize user comfort without compromising energy usage in the building.
Testing with EMA (Evolution Mating Algorithm) to optimize energy use and user
comfort has been conducted, and the results will be discussed in the next section.

4.2 Post-Optimization Conditions
This section discusses the conditions of the office area in the building after optimization
using EMA (Evolution Mating Algorithm) covering the results of optimizing tempera-
ture and lighting using EMA, the convergence curve, power consumption, temperature,
lighting, Gain User Comfort (GUC) values, and Gain Energy Saving (GES) values. The
post-optimization values will also be compared with the pre-optimization values.

EMA has been designed by incorporating the research variables and parameters
as outlined in Section 3. Input data for 744 hours in May 2019 were fed into EMA,
resulting in optimal temperature and lighting values to achieve balanced GUC and GES
values. The optimal temperature and lighting values obtained are 23°C and 358.6 lux
respectively. This optimal value is achieved with an objective function value of 0.74493.
The equation to obtain this objective function value has been explained in Section 3.
This objective function value was reached at the 26th iteration of the Evolution Mating
Algorithm.
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Figure 12. Convergence Curve

Figure 12 shows the number of iterations against the objective function value. This
convergence curve demonstrates how the objective function value remains convergent
from the 26th iteration to the 100th iteration at 0.74493. Each input data set of 744
hours represents the population size resulting 744 populations in this study. Each
line on the convergence curve represents the 744 populations that fed into EMA to
obtain the optimal objective function value, which subsequently determines the optimal
temperature and lighting value.

Figure 13 shows power consumption before and after optimization. Figure 13 is
divided into four subfigures, illustrating energy consumption for the first, second, third,
and fourth weeks before and after optimization. In Figure 13(a), energy consumption
before and after optimization for the first week of May 2019 is presented. The graph
indicates that the optimization using EMA successfully reduced electricity usage on
May 4th and 5th and at various other times throughout the week. The increase in
energy consumption at other times is due to the algorithm’s attempt to raise lighting
consumption to the optimal point, resulting in increased energy usage at certain times.
Overall, the optimization using EMA successfully saved 202.8 kWh in the first week,
reducing energy consumption from 2,726.6 kWh before optimization to 2,523.9 kWh
after optimization.

Figure 13(b) shows energy consumption before and after optimization for the second
week of May 2019. The figure indicates that the EMA optimization successfully reduced
energy consumption from May 13th to May 16th, 2019. However, it also shows an
increase in energy consumption on May 10th, 2019, due to the recorded temperature
being above the optimal point and the lighting level being below the optimal point
on that day. As a result, the EMA optimization attempted to raise the temperature
and lighting to optimal levels, leading to increased energy consumption on that day.
Overall, the EMA optimization saved 273.2 kWh in the second week, reducing energy
consumption from 2,332.5 kWh before optimization to 2,059.4 kWh after optimization.
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a). 1st Week

b). 2nd Week

c). 3rd Week

d). 4th Week

Figure 13. Energy Consumption Before & After Optimization (May 2019)
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Figure 13(c) shows energy consumption before and after optimization for the third
week of May 2019. The figure shows that the EMA optimization only successfully
reduced energy consumption on May 18th, 2019, while on other dates such as May 21st,
it increases energy consumption. This increase occurs because the recorded temperature
during the measurement 0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00
Total Load (kW) Date & Hour Before Optimization After Optimization 0.00 10.00
20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00 Total Load (kW) Date & Hour Before
Optimization After Optimization was above the optimal value, so the optimization
attempted to lower it to the optimal temperature, which required more energy. In
addition to temperature, lighting also contributed to the increase in energy consumption,
as the average lighting in the third week was below 220 lux. Consequently, the EMA
optimization increased the lighting to the optimal level resulting in higher energy
consumption. Overall, the optimization increased energy consumption by 56.7 kWh in
the third week, from 2,687.4 kWh before optimization to 2,744 kWh after optimization.

Figure 13(d) shows energy consumption before and after optimization for the fourth
week of May 2019. The figure indicates that the EMA optimization successfully reduced
energy consumption at certain times, while at most times, the optimization algorithm
increased energy consumption. This was also due to the temperature and lighting
values being below optimal levels, requiring more energy to reach the optimal point.
In certain hours, the lighting level was even below 180 lux. Overall, the optimization
increased energy consumption by 131.7 kWh in the fourth week, from 2,029 kWh before
optimization to 2,160.7 kWh after optimization. In addition, the EMA optimization
successfully reduced total energy consumption by 287.6 kWh for the entire month of
May 2019.

Figure 14. Temperature Before & After Optimization



174 B. Alvin et al.

Figure 14 shows the office area temperature before and after optimization. Based
on the optimization results using EMA, it can be observed that any temperature value
below the optimal point of 23°C is adjusted to maintain the optimal temperature of
23°C. This approach helps conserve electrical energy and increases user comfort (GUC).
During lunch hours and when the building is not operational, the optimization is inactive
resulting in the optimized temperature being the same as the sensor temperature, causing
the pre- and post-optimization graphs to overlap. Overall, the EMA optimization
successfully maintained the room temperature at 23°C during the building’s operational
hours.

Figure 15. Lighting Before & After Optimization

Figure 15 shows the office area lighting before and after optimization. Based on
the optimization results using EMA, it can be seen that any lighting value below the
optimal value of 358.6 lux is adjusted to the optimal point. Raising all lighting values to
the optimal point increases energy usage, which negatively impacts the GES value.

Figure 16. Gain Energy Saving (GES) Values after Optimization
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This is inversely proportional to the GUC value, which increases as the lighting
value rises to the optimal point, enhancing user comfort. Overall, the EMA optimization
successfully maintained lighting at 358.6 lux during the building’s operational hours.

Figure 16 shows the graph of population against GES values, where the method to
obtain GES has been explained in Section 3. The optimal temperature and lighting values
used to obtain the post-optimization GES are the optimal values derived from EMA,
which are 23°C and 358.6 0.0 50.0 100.0 150.0 200.0 250.0 300.0 350.0 400.0 Lighting
(Lux) Date & Hour Lighting Before & After Optimization Before Optimization After
Optimization lux, respectively. The X-axis in Figure 16 represents the population size,
corresponding to 744 hours in May 2019 (31 days). The Y-axis in Figure 16 represents
the GES values, ranging from a minimum of 0 to a maximum of 1.

The maximum GES value after optimization, based on Figure 16, is 0.7398, which is
lower than the maximum GES value before optimization. This decrease occurs because
most lighting values were below the optimal point, requiring more electrical energy to
raise the lighting to the optimal value.

Additionally, at certain times, the temperature was also above the optimal value,
requiring more energy to lower the temperature to the optimal point. Figure 16 also
shows that the minimum GES value touches 0.0 at certain times. This occurs because, at
those points, the lighting measured by the sensor was below 10 lux (just before or after
office hours). Consequently, the algorithm attempts to raise the lighting to the optimal
point from a very low level, requiring significantly more electrical energy, resulting in
the GES value dropping to 0.0.

Figure 17. Gain User Comfort (GUC) Values after Optimization

Figure 17 shows the graph of population against GUC values, where the method to
obtain GUC has been explained in Section 3. The optimal temperature and lighting
values used to obtain the post-optimization GUC are the optimal values derived from
EMA, which are 23°C and 358.6 lux, respectively. The X-axis in Figure 17 represents
the population size, corresponding to 744 hours in May 2019 (31 days).
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The Y-axis in Figure 17 represents the GUC values, ranging from a minimum of 0
to a maximum of 1. The maximum GUC value after optimization, based on Figure 17,
is 0.75, which represents a significant increase compared to the pre-optimization state
shown in Figure 11 (pre-optimization graph). It can be observed that when the building
is operational, the GUC value reaches 0.75, and when the building is not operational,
the GUC value drops to the minimum point of 0.0. Therefore, the graph of population
against GUC values shows fluctuations.

This study demonstrates that the EMA optimization algorithm can optimize energy
usage without compromising user comfort. Additionally, this research proves that
the EMA optimization algorithm can effectively operate in tropical countries, where
office buildings utilize cooling systems. This is consistent with results from studies
in cold-climate countries where heating systems are used in buildings. The findings
also show that the EMA optimization algorithm can optimize user comfort, energy
consumption, temperature, and lighting [11]. Other studies in cold-climate countries
have also shown similar results using EMA for optimization. The algorithm has been used
to optimize temperature, lighting, air quality, energy consumption, and user comfort
[10] demonstrating that EMA, as part of the Genetic Algorithm (GA), can achieve
optimal optimization. Further research is needed to include additional optimization
variables in tropical countries, such as air quality. Additionally, further studies are
required for the EMA optimization algorithm to produce different optimal values for
each input data set (multimodal), as the current study uses a unimodal optimization
function, resulting in only one optimal temperature and lighting value.

5. Conclusion
The design of the Evolution Mating Algorithm (EMA) optimization algorithm has
produced optimal temperature and lighting values of 23°C and 358.6 lux, respectively.
The optimization ran for 100 iterations and involved 744 populations, representing 744
hours in May 2019. The optimal values were obtained with a fitness function value of
0.74493, which converged at the 26th iteration out of the total 100 iterations conducted.

Electrical energy consumption after optimization decreased in the first and second
weeks of May. In the first week, energy consumption was reduced by 202.8 kWh, from
2,726.6 kWh to 2,523.9 kWh, and in the second week, it was reduced by 273.2 kWh,
from 2,332.5 kWh to 2,059.4 kWh. This trend was reversed in the third and fourth
weeks, where energy consumption increased by 56.7 kWh, from 2,687.4 kWh to 2,744
kWh in the third week, and by 131.7 kWh, from 2,029 kWh to 2,160.7 kWh in the
fourth week. The reduction in energy consumption occurred because, during these
weeks, the average room temperature was below the optimal temperature value, so the
algorithm reduced energy consumption by raising the room temperature to the optimal
level. Conversely, the increase in energy consumption happened because, during these
weeks, the average room temperature was above the optimal value, and the lighting
was below the optimal value, so the algorithm worked to lower the temperature and
increase the lighting, which required more energy. Overall, the optimization using
EMA successfully saved 287.6 kWh of electricity in May 2019.
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By improving energy efficiency, the comfort level of building users also increased.
User comfort was measured using the GUC (Gain User Comfort) variable, where
the GUC value ranges from 0 (minimum) to 1 (maximum). The closer to the maxi-
mum point, the more comfortable the building users are considered to be. The pre-
optimization results showed a highest GUC value of 0.42, while the post-optimization
GUC value was consistently 0.75 when the building was operational. This indicates
that building users felt comfortable with the optimal temperature and lighting values
produced by the EMA optimization algorithm.

The energy efficiency achieved from this research is also in line with government
policy according to Government Regulation No. 33 of 2023 on energy conservation.
Energy efficiency technology is applied through optimization using the EMA opti-
mization algorithm. Policymakers, especially in the building sector, can implement
optimization technology using EMA to enhance energy efficiency. Further research
is needed on the application of the EMA optimization system to a control system that
will manage actuators to regulate the cooling and lighting systems. It is hoped that
the control of the cooling and lighting systems by actuators will output the optimal
temperature and lighting values from the EMA optimization system. With further
research, the EMA optimization system could be applied to achieve energy efficiency in
buildings without compromising user comfort. Additionally, the long-term goal is for
the EMA optimization system to be monetized.
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