
IJECBE (2023), 1, 2, 103–124
Received (15 December 2023) / Revised (27 December 2023)

Accepted (28 December 2023) / Published (30 December 2023)
https://doi.org/10.62146/ijecbe.v1i2.30

https://ijecbe.ui.ac.id
ISSN 3026-5258

International Journal of Electrical, Computer and Biomedical Engineering

RESEARCH ARTICLE

Advancing Network Infrastructure: Integrating
VXLAN Technology with Automated Circuit
Operations and NOS Configurations
Arfan Efendi, Diyanatul Husna, and I Gde Dharma Nugraha*

Department of Electrical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus UI Depok,
West Java 16424 Indonesia
*Corresponding author. Email: i.gde@ui.ac.id

Abstract
Enhancing network infrastructure is achieved through integrating VXLAN technology,
Python-automated circuit operations, and Ansible-driven Network Operating System
(NOS) configurations, complemented by GitHub for reliable configuration backups.
VXLAN, a robust network virtualization protocol, addresses the challenges of managing
extensive network segments. Python scripts facilitate the automated analysis, creation,
and management of network circuits, significantly boosting efficiency and accuracy.
Ansible, a powerful automation tool, is employed to streamline NOS configurations,
ensuring consistency and reducing manual overhead in network settings. Concurrently,
GitHub, working in tandem with crontab scheduling, offers a dependable platform for
the automated, regular backup of configurations, thus enhancing network resilience
and simplifying recovery processes. The collective implementation of VXLAN, Python,
and Ansible automation, along with GitHub for configuration management, marks a
notable advancement in operational efficiency, underscoring their importance as critical
components in the modernization and security of network infrastructures.

Keywords: VXLAN, Automation, Python, Git, Ansible

1. Introduction
The need for robust, scalable, and efficient solutions is paramount in the ever-evolving
network infrastructure domain. Virtual Extensible LAN (VXLAN) has emerged as a
pivotal technology in addressing the complexities of modern network environments,
particularly in data centers and cloud computing. VXLAN’s ability to enable more



104 Arfan Efendi et al.

extensive scale network segmentation and overcome the limitations of traditional
VLANs makes it an essential component in contemporary network architecture.

However, the benefits of VXLAN can be fully realized only when complemented
by effective management and automation strategies. In this context, Python emerges
as a powerful tool, offering flexibility and efficiency in automating network operations.
Automating circuit operations, including analysis, creation, and management, becomes
not just a possibility but a necessity to manage the intricate dynamics of VXLAN-
enabled networks.

Moreover, reliable and accessible network configuration backups cannot be over-
stated in ensuring network resilience. In this vein, Ansible plays a crucial role. Its
ability to automate the retrieval of network configurations and facilitate their seamless
upload to a version control system like GitHub revolutionizes the way network health
is maintained. By leveraging GitHub’s version control capabilities and integrating
it with crontab for scheduled backups, network administrators can ensure that their
configurations are secure, up-to-date, and easily recoverable in case of disruptions.

The fusion of VXLAN technology with Python-driven automation, Ansible for
network configuration, and GitHub for configuration backups represents a holistic ap-
proach to network management. It addresses key challenges in network infrastructure,
such as scalability, efficiency, and reliability. This article delves into these technologies’
synergies and implementation, demonstrating how they collectively enhance network
infrastructure in today’s demanding and dynamic networking landscapes.

2. Theoretical Frameworks
2.1 VXLAN
2.1.1 Overview of VLAN Technology
In RFC7348, VXLAN technology was formally defined and documented [1]. VXLAN
functions as a Layer 2 overlay mechanism implemented over a Layer 3 core network
[2]. This technology addresses the need for overlay networks in environments such
as enterprise data centers and service provider settings. By providing isolation and
extending its Layer 2 domains, it hopes to serve a large number of tenants [3]. VXLAN
creates an overlay network by encasing a UDP datagram around a MAC frame [4].
VXLAN specifically achieves tunneling by adding extra headers, such as outer IP and
UDP addresses and VxLAN headers, to encapsulate the original frames [5].

Figure 1. VXLAN Packet Format



IJECBE 105

VXLAN employs an 8-byte header featuring a 24-bit identifier (VNID) along
with several reserved bits. This VXLAN header is incorporated into the UDP payload
together with the original Ethernet frame. The 24-bit VNID plays a crucial role
in identifying Layer 2 segments and maintaining isolation between these segments.
Given the 24-bit allocation for the VNID, VXLAN can support up to 16 million
logical segments. Key terminologies in the context of a VXLAN Fabric include [6]:

1. VTEP (Virtual Tunnel Endpoint): This is either a hardware or software component
at the network’s edge, responsible for establishing the VXLAN tunnel and handling
the encapsulation and decapsulation processes of VXLAN.

2. VNI (Virtual Network Instance): This represents a logical network instance that
provides Layer 2 or Layer 3 services and defines a Layer 2 broadcast domain.

3. VNID (Virtual Network Identifier): A 24-bit segment ID that addresses up to 16
million logical networks within the same administrative domain.

4. Bridge Domain: This encompasses a group of logical or physical ports that share
similar flooding or broadcast characteristics.

2.1.2 VXLAN in Modern Networking Environment
In modern networking environments, Virtual Extensible LAN (VXLAN) has emerged
as a key technology in addressing the limitations of traditional network infrastructures,
particularly in large-scale and cloud-based deployments. VXLAN enables the creation
of overlay networks by encapsulating Layer 2 frames within Layer 3 packets, thus
significantly expanding the scope of network segmentation and scalability. This
technology is instrumental in facilitating multi-tenant architectures and providing the
flexibility required in dynamic data center environments. The ability to span across
various physical locations while maintaining network isolation positions VXLAN
as a cornerstone technology in the evolution of network virtualization and cloud
computing.

2.1.3 Challenges and Solutions with VXLAN Implementation
Implementing VXLAN technology, while offering substantial benefits in network
virtualization and scalability, presents distinct challenges, including complexity in
network configuration and management and potential integration issues with existing
network infrastructures. Addressing these challenges involves leveraging advanced
network automation tools and strategies to simplify VXLAN deployment and config-
uration processes. Additionally, ensuring compatibility with existing VLAN setups
necessitates meticulous planning and the use of transition mechanisms. Overcoming
these hurdles also requires focusing on educating network teams about VXLAN’s
operational intricacies. Moreover, optimizing the use of network resources to manage
the increased overhead due to VXLAN encapsulation is essential. Effective solutions
lie in adopting a holistic approach that combines technical strategies with skill devel-
opment, ensuring a smooth and efficient VXLAN integration into diverse network
environments.

2.2 Automation



106 Arfan Efendi et al.

2.2.1 The Role of Automation in Network Management
Currently, automation is a commonly heard concept in the field of computer tech-
nologies. Network architects and operators are confronted with a growing number
of everyday obligations, such as implementing new services and improving network
performance [7]. The primary objective of an automated system is to minimize the
requirement for human intervention. Upon receiving information from a human
or another system, it is programmed to operate autonomously without requiring
additional external input. Although the intricacy involved in building such systems
can be a barrier, their benefits frequently outweigh and surpass this concern. En-
hancements are typically observed in both the efficacy of the activity and the caliber
of the solutions generated. The primary function of the human operator is to initiate
the system and provide assistance or maintenance when necessary throughout its
autonomous operations rather than being responsible for the entire activity. Further-
more, this results in solutions being obtained with greater efficiency and precision [8].
Automation enables real-time network adjustments, proactive troubleshooting, and
dynamic resource allocation, improving network performance and reliability. This
shift towards automation is essential in modern network environments, where the
complexity and scale of networks demand more agile and responsive management
techniques.

2.2.2 Automation Techniques and Tools
Python as a Scripting Code: Python has emerged as a leading scripting language in
network automation for its simplicity, versatility, and extensive library support. It
allows for creating custom scripts to automate various network tasks, from configura-
tion management to data analysis, providing a powerful tool for network engineers
to streamline complex processes.

Ansible as Network Operating System (NOS): Infrastructure as Code (IaC) tools,
including Ansible scripts, are employed in the large-scale deployment of computing
infrastructure [9]. Ansible was chosen as the primary control method due to its
extensive use in both the commercial and academic sectors for scripting infrastructure
definitions and deploying them across various cloud providers [10][11][12]. Ansible
offers a robust platform for automating network operating systems, enabling consistent
and scalable configuration across diverse network devices. Its agentless architecture
and use of simple, declarative language make it an effective tool for automating
routine tasks and ensuring network configuration compliance. Ansible characterizes
the IT infrastructure by emphasizing the interconnections among servers, rather
than treating them as separate entities. An essential characteristic of Ansible is its
dependence on inventory files, which are considered the primary authoritative source
[13].

Git as Version Control System (VCS): Git plays a critical role in automation by
providing a reliable system for version control of network configurations. It allows
for tracking changes, collaborating on configurations, and maintaining a historical
record of network states, enhancing the overall management and recovery processes.



IJECBE 107

2.2.3 Integration of Automation with VXLAN
Integrating automation tools and practices with VXLAN technology is key to man-
aging the inherent complexity of large-scale virtual networks. Automation facilitates
efficient deployment, configuration, and management of VXLAN networks, enabling
rapid provisioning of network segments and streamlined management of virtual over-
lays. Network administrators can quickly adapt VXLAN configurations to changing
network requirements through automation, reduce manual intervention, and ensure
consistency across the network’s virtual landscape.

2.2.4 Addressing the Complexity of VXLAN Networks
Addressing the complexity of VXLAN networks through automation involves lever-
aging tools and scripts to manage the extensive network segments and the associated
encapsulation overhead. Automation provides the means to efficiently handle VXLAN-
specific configurations, such as VTEP setup and VNI mappings, and to integrate these
with existing network policies and structures. By automating these processes, network
administrators can effectively manage the scalability and flexibility that VXLAN offers
while maintaining oversight and control over the network’s performance and security.

3. Related Works
The introduction of VXLAN technology in datacenter connection topologies repre-
sents a notable advancement in the domain of network architecture. This technology
is wellacknowledged for its capacity to improve network scalability and flexibility,
especially in intricate data center environments. The adoption of VXLAN is motivated
by the need for more effective network segmentation solutions that can accommo-
date the growing demands of contemporary data traffic and cloud services. In this
particular situation, automation is not merely a convenience but rather an essential
requirement to diminish human mistakes and enhance operational effectiveness. This
development highlights a significant change in the network management paradigm,
with a growing emphasis on automated solutions for effectively managing intricate
network architectures.

The use of automation in network operations, particularly in the context of
VXLAN, has become a crucial area of concentration. The automation process primar-
ily aims to streamline mundane and repetitive processes, enabling network managers
to dedicate their attention to more strategic efforts. The increasing adoption of script-
ing languages and tools such as Ansible demonstrates the shift towards automation,
facilitating the development of network systems that are more flexible and robust.
Ansible has become well-known for its capacity to automate intricate network set-
tings and streamline their incorporation with version control systems like Git. These
advancements emphasize the industry’s continuous endeavors to improve network
dependability and efficiency through automated procedures, which is a crucial element
of this research.

The choice of Python as the programming language for network automation ac-
tivities is essential in this transformation. Python is widely recognized for its simplicity
and adaptability, which makes it an excellent option for automating intricate network
tasks. Python’s extensive standard library and diverse third-party modules make it



108 Arfan Efendi et al.

highly suitable for duties such as verifying current configurations and dynamically
modifying network settings. The utilization of Python in this role exemplifies a wider
industry pattern of employing advanced scripting languages for intricate network
automation assignments.

Moreover, the decision to incorporate Git as a Version Control System for config-
uration management and utilizing Ansible for automating configuration retrievals
and changes is a significant choice in this research. The capacity of Git to monitor
modifications, preserve a record of versions, and support collaborative endeavors, along
with Ansible’s effectiveness in managing configurations, renders them indispensable
tools for network configuration management. This technique not only guarantees
the consistency and restorability of network configurations but also adds a level of
security and responsibility that is crucial in contemporary network administration.
Integrating Git’s resilient version control system with the automation capabilities
of Python and Ansible offers a comprehensive method for effectively managing the
intricacies associated with VXLAN-based network systems.

In the quest to safeguard the network configuration backups stored in the Git
repository, particularly because these backups are hosted on an external platform,
meticulous security protocols have been adopted. The repository is set to private,
ensuring that access is strictly limited to authorized personnel who have been granted
explicit invitations. This controlled access mechanism is crucial in preventing unautho-
rized disclosure and potential security breaches. By restricting repository visibility and
interaction to a select group, the research upholds stringent security standards, thereby
reinforcing the confidentiality and integrity of sensitive network configuration data.
This proactive security measure reflects a comprehensive understanding of the risks
associated with external data storage and underscores the research’s commitment to
maintaining robust network security in an era where data protection is paramount.

The author acknowledges that there is much to be developed for future progress.
Therefore, the Python automation scripting files have been uploaded to a public
repository for use in future developments. The repository URL is accessible at
https://github.com/arevhan/vxlan-circuit-management.

4. Methodology
4.1 Network Setup
This chapter will specifically address the topology employed and the procedure for
establishing a VXLAN circuit. The laboratory experiment employs Eve-NG as an
emulation tool to support the use of VXLAN technology within a spine and leaf
topology. Due to limited resources, a solitary spine router, specifically dc-spine,
functions as the route reflector. The lab configuration consists of four leaf routers,
each representing a distinct Point of Presence (POP) located in different locations and
data centers. The names assigned to these are Bandung-leaf, Jakarta-leaf, Surabaya-
leaf, and Bali-leaf.

A switch exclusively designated for administration is linked to every device to
improve the network setup, guaranteeing smooth integration and control. In addition,
the system incorporates a jump host that serves as a central controller for automated op-
erations. The jump host serves as a crucial component in coordinating and optimizing



IJECBE 109

the network automation tasks, effectively consolidating control.

Figure 2. Automation operation with spine and leaf topology

Based on topology above, a crucial element of the network architecture is the jump
host, which serves as a centralized server with Ansible and Python installed, playing
a key role in network automation and acting as a scheduler for pushing updates
to Git repositories. Jump host connects to the internet to upload to the GitHub
repository. The network topology adopted is a spine and leaf configuration optimized
for resource efficiency, with a single spine router functioning as a route reflector.
To ensure streamlined management and oversight, the spine, leaf nodes, and the
jump host are interconnected through a dedicated management switch, highlighting
an integrated approach to network administration in modern, resource-constrained
environments.

4.1.1 VXLAN Implementation
The study involves deploying VXLAN on the Cisco Nexus 9000v in the Eve-NG
virtual environment, which serves as the virtual infrastructure for the research. The
Cisco Nexus 9000v series is selected for its sophisticated capabilities in managing
VXLAN, which is essential for attaining network virtualization and segmentation.

Before commencing the VXLAN configuration, it is imperative to activate partic-
ular functionalities on the Cisco Nexus 9000v devices. The major features include
’vn-segment’, ’evmed’, and ’nv overlay’. Including the ’vn-segment’ function is crucial
for facilitating VLAN to VXLAN mapping, enabling enhanced network segmenta-
tion with improved efficiency. The ’evmed’ functionality is utilized to manage events
within the network, offering improved monitoring and automation functionalities.
Finally, the ’nv overlay’ function is crucial for activating the network virtualization
overlay, which is the fundamental VXLAN technology.

The configuration procedure is executed with great attention to detail on every
device inside the spine and leaf structure. This entails configuring each spine and leaf
device in the network to guarantee their ability to sustain and engage in the VXLAN
overlay. The configuration process involves setting up VXLAN tunnel endpoints



110 Arfan Efendi et al.

(VTEPs), specifying the VXLAN network identities (VNIs), and configuring the
required routing protocols to enable efficient data transmission across the VXLAN
fabric.

The configuration of each spine and leaf device is customized to suit its specific
role in the architecture. The spine devices serve as the primary infrastructure of the
network, designed to ensure the most efficient routing and communication between
the leaf devices. The leaf devices, which serve as the access layer of the network, are
set up to establish connections between end devices and other network components
within the VXLAN overlay.

This research intends to showcase the practical implementation of VXLAN by
carefully configuring and setting up Cisco Nexus 9000v devices in the Eve-NG
environment. The goal is to illustrate the efficacy of VXLAN in constructing a
network infrastructure that is stable, scalable, and adaptable.

Figure 3. Enabling feature to impelementation of VXLAN

4.1.2 Network Device Configuration
The initial step in configuring network devices for this VXLAN implementation
involves creating the Open Shortest Path First (OSPF) protocol as the underlying
network. OSPF is an extensively utilized inner gateway protocol that plays a vital
role in facilitating efficient and dynamic routing within a network. It establishes the
fundamental routing architecture required to operate the VXLAN overlay efficiently.

Subsequently, the setup of VXLAN Tunnel Endpoints (VTEPs) is performed.
VTEPs have a crucial function in the VXLAN architecture by encapsulating and
decapsulating the network traffic. This procedure entails allocating IP addresses to
VTEPs and guaranteeing seamless integration into the OSPF routing system, enabling
uninterrupted connectivity throughout the network.

MP-BGP is configured as the control plane for VXLAN. MP-BGP is responsible
for disseminating the routing and forwarding information among the VTEPs, allowing
them to acquire and sustain knowledge of the network’s topology. This configuration
is crucial for establishing a cohesive, expandable, and effective overlay network that
extends across multiple network segments.

After setting up the underlay and control plane, the next step is configuring the
VXLAN network identifiers (VNIs). This entails configuring the ’vn-segment’ on
VLANs, establishing the ’nve’ interface, and linking VNIs with the EVPN instances.
Mapping the VLANs to VNIs is a crucial step that allows for the encapsulation of
Layer 2 frames into Layer 3 packets, a fundamental requirement for VXLAN.

Layer 3 switches are also utilized as management switches, in addition to these
setups. Every management switch is linked to the management ports of the spine and
leaf devices. This configuration offers a specialized network for managing traffic, apart



IJECBE 111

from the traffic used for data transmission. It guarantees strong network management
and monitoring capacities, making it easier to administer the spine-leaf design and
simplify the management of the entire network infrastructure.

By carefully following these configuration steps, which include implementing
OSPF as the underlying protocol and configuring MP-BGP, VTEPs, and VNIs,
the network devices are optimized to operate using VXLAN. By including Layer 3
management switches, the network’s management and operational efficiency are en-
hanced, establishing a strong foundation for a high-performing and resilient VXLAN
network.

4.2 Automation Scripts Development
This research utilizes Python as the primary coding framework in the field of script
creation for network automation, together with Ansible for automating backup setups.
The selection of Python is motivated by its extensive recognition as a robust and
adaptable programming language, especially suitable for intricate network automation
assignments. Python’s vast library ecosystem and its capacity to seamlessly connect
with diverse network devices and protocols make it an optimal selection for creating
tailored automation scripts.

The Python scripts created in this research are intended to automate various
processes within the VXLAN network. This encompasses the automation of network
configuration analysis, the installation and administration of circuits, and the real-time
modification of network settings. Python’s scripting features enable the development
of powerful, scalable, and adaptable automation solutions that can meet the evolving
requirements of the network infrastructure.

In addition to Python, Ansible is employed as a crucial tool for automating the
configuration of network backups. Ansible, renowned for its straightforwardness and
lack of agents, excels at managing and configuring network devices. The declarative
nature of the language enables precise and succinct declarations of configuration states,
making it a powerful tool for network backup management. This study involves the
creation of Ansible playbooks to automate the retrieval of network configurations and
guarantee their uniformity by uploading them to a Git repository for version control.

Integrating Python for general network automation activities with Ansible for
backup configuration automation constitutes a holistic approach to network adminis-
tration. Python scripts manage the immediate operational activities in the network,
guaranteeing efficiency and dependability in daily operations. Ansible playbooks
prioritize the essential task of configuration management, ensuring that network
configurations are securely backed up and easily recoverable when needed. The
utilization of both approaches in automation script development demonstrates the ca-
pability of integrating diverse technologies to attain a robust and controllable network
infrastructure.

4.2.1 Python Scripting
Python scripting is essential for automating many aspects of network design and
administration in this research. The utilization of the Netmiko module is essential in
this methodology, facilitating smooth communication between Python scripts and



112 Arfan Efendi et al.

network devices. Netmiko is a Python library developed explicitly for managing SSH
connections to network devices. It plays a crucial role in performing setup instructions
and receiving data from these devices. The author has created a collection of Python
files, with each file having a distinct purpose in the process of automation:

1. The file "devices_leaf.py". This script is the fundamental element of the automa-
tion process. It functions as a repository for storing login credentials and host
information, facilitating access to network devices. This script enhances the ef-
ficiency and security of the automation process by consolidating device access
information, hence streamlining the management of various devices.

2. The file “add_vlan.py”: This script specifically addresses the VLAN configuration
element. It allows for the automatic setup of VLANs on network devices according
to user inputs. This function is crucial for preserving network segmentation and
guaranteeing the optimal distribution of network resources. Since many revision
for this script we will using add_vlan3.py for final result.

Figure 4. Add Vlan algorithm

3. The file “add_vni.py”: This script is designed to configure VXLAN on network
devices. This tool streamlines the procedure of linking VLANs with VXLAN
network identifiers (VNIs), which is a crucial stage in establishing a VXLAN
overlay network. This script guarantees the uniformity and accuracy of VXLAN
configuration throughout the network.

4. The file “add_vni.py”: This script is designed to configure VXLAN on network
devices. This tool streamlines the procedure of linking VLANs with VXLAN
network identifiers (VNIs), which is a crucial stage in establishing a VXLAN



IJECBE 113

overlay network. This script guarantees the uniformity and accuracy of VXLAN
configuration throughout the network.

Figure 5. Add VNI algorithm

5. The file check_vlan.py. This file functions as the primary menu executable script,
offering a user-friendly interface for network managers. It enables them to
verify VLAN IDs, VNI configurations on the nve interface, and EVPN settings.
This script is essential for overseeing and verifying the network configuration,
guaranteeing that the network functions as planned. Also for some revision we
decided to using check_vlan3.py for final script.

The collection of these Python scripts constitutes a comprehensive set of tools
for automating network tasks. This research showcases the efficacy of Python in
automating intricate network activities by utilizing Netmiko for device connectiv-
ity and developing specialized scripts for certain tasks. Scripts not only streamline
mundane chores but also improve the precision and dependability of network setups,
which is vital in VXLAN-enabled environments.

The flowchart depicts a structured network automation sequence that begins with
the execution of the ’Check_vlan.py’ script to verify the existence of a specific VLAN
across network devices. Upon entering the VLAN ID, the script determines whether
the VLAN already exists; if it does not, the user selects the desired node(s) to configure
and proceeds to run ’Add_vlan.py’ to add the VLAN. Subsequently, ’Add_vni.py’ is
invoked to associate a VNI with the newly created VLAN, requiring the user to input
the VNI number. This process iterates through a decision loop where the user can
either continue adding VNIs to other nodes or conclude the session, ending with the
’Exit’ state that terminates the automation process.



114 Arfan Efendi et al.

Figure 6. Check Vlan algorithm

Figure 7. Flowchart python automation script



IJECBE 115

4.2.2 Ansible Playbooks
Ansible is crucial in automating configuration management and backup processes
in this research. Ansible is deployed on a central management system to guarantee
that all network device configurations are current and uniform. Ansible serves as a
safeguard by automatically preserving configurations in situations where operators
may overlook writing them during device setup. This functionality greatly mitigates
the possibility of configuration divergence and improves the overall dependability of
the network infrastructure.

Figure 8. Capture local drive backup configuration from ansible

In addition, Ansible is utilized to gather and store backup settings from every
network device. The backups are stored on a local drive, guaranteeing the presence
of a dependable duplicate of every device’s settings at all times. This strategy is
crucial for expedited recovery in the event of a device malfunction or other network
complications.

Figure 9. Capture crontab -e scheduler for ansible playbook backup configuration

A crontab scheduler is used to automate the backup procedure. The scheduler is set
to activate the Ansible playbook, which subsequently retrieves the configurations, four
times daily. The process commences at 00:00 and recurs every six hours. The frequent
and regular backup schedule guarantees that the latest settings are consistently backed
up, hence reducing the risk of data loss in the event of sudden network changes or
failures.

Figure 10. Flow Automation using ansible and github

At the specified time, Jump host takes configuration backup data to the network
device. Once successful, it will be saved on the local driver server as a backup. To



116 Arfan Efendi et al.

continue saving to the repository, Jumphost will push to GitHub at the specified time
using crontab.

4.3 Version Control Integration Git Configuration
We recognize that backup configuration files are inherently private. However, as a
precautionary measure against potential internal failures, we have opted to upload
them outside the internal network. To mitigate any associated risks, we have instituted
restrictions on these files. We designate the files as private and accessible by invitation
only.

The steps to make a repository private begin with navigating to the dashboard
menu, entering the repository name, and setting it to private, followed by submitting
the "create a new repository" form.

Figure 11. Create private repository from dashboard

Figure 8 illustrates the creation of a private repository from the dashboard. Once
the repository is established, we access the previously created repository. As shown in
Figure 9, the repository is confirmed to be private.

Figure 12. Private repository

Integrating Git into this network management framework is crucial for estab-
lishing a reliable version control system for the network configurations. The Git
repository is hosted on a jumphost, an Ubuntu server that functions as a central hub
for managing configuration version control.

To establish a connection between the Git repository on the jumphost and the
network infrastructure, a series of actions are executed. Initially, Git is installed on
the Ubuntu server, and a Git repository is created to hold the network configurations.



IJECBE 117

Subsequently, SSH keys are made on the jump host and then incorporated into the
Git service (such as GitHub or a self-hosted Git server) to build a safe and protected
connection.

Figure 13. Step by step establish github to jump host server

The sequence of commands outlines the process for setting up Git for version
control and connecting to a remote repository. It begins with the installation of Git on
the system using “apt-get install git”. The user then configures Git with their username
and email using git config. After initializing a new Git repository within the Ansible
backup configuration directory using “git init”, all existing files are staged for the
initial commit “with git add .”. A commit is then made with a descriptive message ‘git
commit -m “Initial Commit"’. The next step is to link the local repository to a remote
GitHub repository using “git remote add origin”, followed by pushing the commit to
the remote repository on the ’master’ branch with “git push -u origin master”. SSH keys
are generated using ssh-keygen to establish a secure connection between the local
machine and the GitHub repository.

4.4 Testing and Validation
4.4.1 Automated Operations Testing
1. After careful review and multiple modifications, the check_vlan3.py script has been

chosen to be executed during this testing phase. This test aims to create VLAN
999 and then integrate it into a VXLAN segment using VNI 100999. The pro-
cess commences by executing check_vlan3.py using the “python3 check_vlan3.py”
command. In this procedure, the VLAN ID is configured as 999, establishing the
foundation for further operations in the test sequence.

Figure 14. python3 executed check_vlan3.py script

2. The Python script initiates a comprehensive check across all leaf nodes for VLAN
999 and VNI 100999 presence.

3. Upon completing the checking process, the script presents an option to either
add the VLAN and VNI or exit. Selecting option 1 initiates the addition of the
VLAN, leading the process to transition to “add_vlan.py”. A menu then reappears,
prompting the selection of the specific node for VLAN configuration.



118 Arfan Efendi et al.

Figure 15. fpython3 executed check_vlan3.py script

Figure 16. Next action after checking vlan from check_vlan3.py

4. Nodes 1 and 2 are selected for this test, representing bandung-leaf and jakarta-leaf,
respectively. The user inputs VLAN 999, then specifies the interface for assigning
this VLAN to the customer. The script subsequently executes the creation of
VLAN 999 and sets the appropriate port for node 1. A similar input prompt then
facilitates the interface assignment for node 2, facing the customer.

Figure 17. create vlan into selected nodes.

5. Returning to the main menu, a verification check for VLAN 999 is explicitly
performed for bandung-leaf and jakarta-leaf.

6. The results from this query confirm that both bandung-leaf and jakarta-leaf are
configured with VLAN 999, as evidenced by the output. This configuration is
further substantiated by reference to Figure 16 in the documentation.

7. The process then navigates back to the main menu, where option two is selected,
leading to the execution of “add_vni.py.” This script is run for devices 1 and 2,
corresponding to bandung-leaf and jakarta-leaf, with the input 999 for VNI. This
input is automatically translated into 100999 for the device configuration.

8. A subsequent verification is conducted from the main menu by selecting option
one and inputting 999.

9. The output indicates that VLAN 999 and VNI 100999 are configured on both



IJECBE 119

Figure 18. Back to main menu and re-check vlan 999 is exist based on input before

Figure 19. Input VNI to establish VXLAN



120 Arfan Efendi et al.

Figure 20. Back to main menu and verify vlan 999 and VNI 100999 created on selected nodes.

bandung-leaf and jakarta-leaf, affirming the successful operation of the automation
process.

4.4.2 VXLAN Functionality Testing
Before the execution of check_vlan3.py, a verification is performed to ascertain the
non-existence of the VLAN. Additionally, the configuration of VNI on interface nve
1 under EVPN is also verified for completeness and accuracy.

Figure 21. Verify before script check_vlan3.py executed

Initially, the VLAN is inputted into the Python script, yet the VNI remains
unconfigured on the device. After entering the VNI in the script, we confirmed its

Figure 22. Capture after input vlan from check_vlan3.py



IJECBE 121

validity by checking the devices. The output displayed "member vni 100999" under
the interface nve1 and "vni 100999 l2" in the EVPN configuration, which indicates
that the VNI has been successfully integrated. To confirm the proper operation of

Figure 23. Capture after input vlan and VNI from check_vlan3.py

VXLAN, a testing procedure is executed on the leaf nodes. To determine connectivity
and functionality, the command "show bgp l2vpn evpn | begin 100999" is executed,
followed by completing ping tests from each node.

Figure 24. Verify VXLAN is working on selected nodes

Figure 25. Verify VXLAN is working to between customer from each node proven by reachable ping

4.4.3 Backup Process and Procedures
The network’s configuration management is enhanced by an Ansible playbook called
backup_configuration.yml, specifically built to store and safeguard configurations.
After the configuration process is complete, the collected configuration files are stored
in a specified local directory. Furthermore, a crontab scheduler is set up to commence
the backup procedure four times daily.

The ansible playbook, backup_configuration.yml, is scheduled to execute at four
predetermined intervals during the day: 00:00, 06:00, 12:00, and 18:00, guaranteeing
systematic and uninterrupted backups. A specific 10-minute timeframe is allocated for
the initial backup processing of the day, which involves generating a fresh folder for
the backups of that particular day. After the initial backup, subsequent backups only
need a 5-minute timeframe after executing the playbook. Therefore, the designated



122 Arfan Efendi et al.

Figure 26. Ansible playbook task

Figure 27. Crontab scheduler for ansible backup configuration task

Figure 28. Crontab scheduler for push to github repository



IJECBE 123

times for these backups are 00:10, 06:05, 12:05, and 18:05. After the day, we will
validate our GitHub repository.

Figure 29. Verification backup configuration uploaded to github repository

5. Conclusions
This project successfully enhanced network infrastructure by integrating VXLAN
technology with advanced automation techniques using Python, Ansible, and Git
for efficient configuration backups. By implementing a spine and leaf architecture
within the Eve-NG environment, significant improvements were observed in network
scalability and flexibility, essential attributes for the evolving demands of modern
data centers. The application of Python in automating network operations notably
streamlined the configuration and management of circuits, while Ansible’s role in
handling configuration backups added a layer of reliability. Additionally, the use of
automated backups, paired with Git’s version control system, ensured the security,
timeliness, and accessibility of network configurations. Throughout the testing and
validation phase, the system’s durability stood out, with the comprehensive evaluation
affirming its precision, reliability, and robustness. The integration of VXLAN with
Python and Ansible represents a significant advancement in addressing the complexi-
ties and evolving needs of contemporary network infrastructures, delivering a scalable,
efficient, and reliable framework for network management.

References
[1] Mallik Mahalingam et al. Virtual eXtensible Local Area Network (VXLAN): A Framework for Overlaying

Virtualized Layer 2 Networks over Layer 3 Networks. RFC 7348. Aug. 2014. DOI: 10.17487/RFC7348.
URL: https://www.rfc-editor.org/info/rfc7348.

[2] Chang-Gyu Lim et al. “Design and implementation of hardware accelerated VTEP in datacenter
networks”. In: 2015 17th International Conference on Advanced Communication Technology (ICACT).
2015, pp. 745–748. DOI: 10.1109/ICACT.2015.7224894.

[3] Joaquin Alvarez-Horcajo et al. “Scaling and Interoperability of All-Path with Bridged and SDN
Domains using VXLANs”. In: 2019 IEEE 44th Conference on Local Computer Networks (LCN). 2019,
pp. 97–100. DOI: 10.1109/LCN44214.2019.8990814.

[4] Claudiu Trăistaru. “VXLAN - A practical approach to cloud computing scalability”. In: 2023
22nd RoEduNet Conference: Networking in Education and Research (RoEduNet). 2023, pp. 1–4. DOI:
10.1109/RoEduNet60162.2023.10274934.

[5] Zhifeng Zhao, Feng Hong, and Rongpeng Li. “SDN Based VxLAN Optimization in Cloud Comput-
ing Networks”. In: IEEE Access 5 (2017), pp. 23312–23319. DOI: 10.1109/ACCESS.2017.2762362.

[6] Brenden Buresh ; Dan Eline;David Jansen; Jason Gmitter; Jeff Ostermiller; Jose Moreno; Kenny Lei;
Lilian Quan; Lukas Krattiger; Max Ardica; Rahul Parameswaran; Rob Tappenden; Satish Kondalam.
A modern, open and scalable fabric VXLAN EVPN. Cisco, 2017.



124 Arfan Efendi et al.

[7] Aptin Babaei, Parham M. Kebria, and Saeid Nahavandi. “A survey on Automation Technologies
used in Network Control and Management”. In: 2022 15th International Conference on Human System
Interaction (HSI). 2022, pp. 1–6. DOI: 10.1109/HSI55341.2022.9869444.

[8] Daniele Bringhenti; Guido Marchetto; Riccardo Sisto; Fulvio Valenza. “Automation for Network
Security Configuration: State of the Art and Research Trends”. In: ACM Comput. Surv. (2023).

[9] Mohammad Mehedi Hassan and Akond Rahman. “As Code Testing: Characterizing Test Quality
in Open Source Ansible Development”. In: 2022 IEEE Conference on Software Testing, Verification and
Validation (ICST). 2022, pp. 208–219. DOI: 10.1109/ICST53961.2022.00031.

[10] Lorin Hochstein; Rene Moser. Ansible: Up and Running. O’Reilly Media, 2017.

[11] Jeff Geerling. Ansible for DevOps: Server and Configuration Management for Humans. Leanpub, 2015.

[12] Julio Sandobalín, Emilio Insfran, and Silvia Abrahão. “On the Effectiveness of Tools to Support
Infrastructure as Code: Model-Driven Versus Code-Centric”. In: IEEE Access 8 (2020), pp. 17734–
17761. DOI: 10.1109/ACCESS.2020.2966597.

[13] Nishant Kumar Singh et al. “Automated provisioning of application in IAAS cloud using Ansible
configuration management”. In: 2015 1st International Conference on Next Generation Computing
Technologies (NGCT). 2015, pp. 81–85. DOI: 10.1109/NGCT.2015.7375087.


