
IJECBE (2023), 1, 1, 44–56
Received (17 July 2023) / Revised ()

Accepted (23 July 2023) / Published (29 September 2023)
https://doi.org/10.62146/ijecbe.v1i1.20

https://ijecbe.ui.ac.id
ISSN 3026-5258

International Journal of Electrical, Computer and Biomedical Engineering

RESEARCH ARTICLE

Performance Evaluation of QUIC Protocol in
Message Replication Overhead in PBFT
Consensus using NS-3
Thio Lutfi Habibi and Riri Fitri Sari*

Department of Electrical Engineering, University of Indonesia, Depok, Indonesia
*Corresponding author. Email: riri@ui.ac.id

Abstract
The development of protocols in the ICT world to increase reliability and speed in data
traffic gave an inspiration to a new protocol called the QUIC protocol. The QUIC
protocol is expected to improve the performance of Transport Control Protocol (TCP).
In addition, developments also occur in blockchain technology where the protocol used
in this technology still uses the existing TCP protocol. In this paper, we aimed to
research whether the QUIC protocol implementation in blockchain infrastructure could
improve the performance of the blockchain infrastructure itself, in terms of the time
required for transactions. We focus on conducting research to measure the overhead time
reduction of Practical Byzantine Fault Tolerance (PBFT) consensus by implementing the
QUIC protocol, the consensus propagation process is a crucial phase in Blockchain. For
simulation we used NS-3 discrete simulation environment to conduct scenario and our
simulation result showed that the QUIC Protocol have potential significant performance
compared to TCP Protocol in large datasets, on the other hand QUIC protocols have
more room for improvement by implementing appropriate congestion algorithms.

Keywords: QUIC, Transport Protocol, NS-3, Blockchain, Consensus, PBFT

1. Introduction
In the current era of ICT development, protocols play a major role for data exchange
and communication for the regulation and standard. Protocol development has
been through so many advancements and discovery of several new protocols [1], in
improving the performance of the existing protocols. One of the new protocols being
developed is the QUIC protocol. This protocol was initially developed by the leading



IJECBE 45

search engine company, Google. Currently, the QUIC protocol has been adapted
by the IETF in May 2021. The purpose of developing this protocol is to reduce
latency and overhead when using the TCP protocol. Using TCP protocol, we need
to establish a connection with the "three-way handshake". Three-way handshake
involves three steps, the client sends a SYN message, the server sends a message that
combines an ACK for the client’s SYN and contains the server’s SYN; and then the
client sends an ACK for the server’s SYN.

The implementation of the QUIC protocol is expected to improve the performance
of applications, especially those using this protocol stack. QUIC is also very helpful
in high round-trip time conditions [2]. The QUIC protocol is implemented on top
of the UDP protocol so that it can be used for compatibility on the current internet
infrastructure, however with the advantages of the QUIC protocol, thus can improved
performance.

On the other hand, another technology that is currently taking place is blockchain.
Blockchain is a technology introduced by Satoshi Nakamoto, in his whitepaper entitled
peer-to-peer electronic cash system in 2008 [3]. Basically, blockchain is a distributed
system that is interconnected to be able to jointly carry out a certain task which refers to
a single ledger basis already defined. Blockchain itself still uses the underlying protocol
commonly used, namely TCP. In this study, we tried to integrate the advantages of
the new protocol, namely the QUIC protocol to get an idea of whether this protocol
can improve the performance of the blockchain itself.

Since blockchain is a system consisting of multiple nodes which are linked together
and distributed fragments of data among them, the consensus algorithm becomes
a crucial part of building data transactions in blockchain. The consensus algorithm
manages and validates transaction data in the blockchain against all participating nodes
in the system. A transaction will not become a commit state until the consensus
algorithm declares data validity across all nodes, then consensus and network layers
are the core of a blockchain platform and terms of cost/complexity needs to be
analyzed before additional layers are integrated [4]. The consensus technique known
as Practical Byzantine Fault Tolerance (PBFT) is built to function via a series of
agreement communication rounds between a minimum set of 3f+1 nodes for each f
problematic nodes. To achieve consensus, PBFT relies on a strong message-passing
protocol among the copies. In PBFT, the replicas exchange many messages during
each communication round. A three-way handshake will be expensive overhead in
PBFT consensus; the number of communications will be directly proportional to the
number of replicas.

In general, the comparison between TCP and UDP will lead to a comparison
of reliability vs. performance, where TCP, as a connection-oriented protocol, will
coordinate data transmission through a three-way handshake, which will be an
overhead cost for communication performance. At this point, UDP, as a connectionless
protocol, has an advantage in terms of performance since communication is handled
individually and can be forwarded to the destination without any prior coordination.
In addition, in terms of protocol security, Datagram Transport Layer Security (DTLS)
inherits the nature of UDP, which is connectionless and allows for flooding encrypted
traffic, compared to TLS, which is used on the TCP protocol via SNI Hello then



46 Thio Lutfi Habibi et al.

Secure communication can be ensured. The QUIC protocol, which utilizes the UDP
transport layer but inherits the connection-oriented nature of TCP, is anticipated
to offer new insights into distributed system infrastructure and transport protocols,
particularly in the context of consensus algorithms, where reliability, performance,
and secure communication requirements are essential. In this study, we will assess the
QUIC protocol’s performance features to implement it for PBFT consensus execution.
As the basis for implementing the QUIC protocol, TCP and UDP will be compared
in this instance.

Furthermore, the organization of this research in this paper is as follows. Section
II explains the references from literature review from previous. Section III describes
the simulation of the QUIC protocol which is integrated into the routine of the
blockchain using the NS-3 simulation tools. Section IV explains the results of the
research and simulations carried out in the previous section. The last, Section V which
contains the conclusions of this study.

2. Study Literature
2.1 QUIC Protocol
The QUIC protocol is a transport protocol originally designed by Google and imple-
mented at the application level. The development of the QUIC protocol is expected
to overcome some problems in the transport layer which is commonly used in TCP
protocols. From the point of view of recentness of this protocol, we can highlight
Important features of QUIC [5]:

1. Communication Implementation Latency: The QUIC protocol combines encryp-
tion with handshake transit to reduce the number of communication round trips.
It gives you cached client code that you can use to talk with the server you want.
This eliminates the requirement for a fresh handshake.

2. Multiplexing: QUIC multicast is made up of streams that each carry their own
data. The stream identification ID is used to send data for each stream in the
specified frame. One or more frames can be included in a QUIC package.

3. Forward Error Correction: FEC is supported by QUIC, with each FEC packet
containing the parity of the packets that make up the FEC group. This feature
can be turned on or off as needed. It enables him to retrieve the contents of a
packet that has been lost in an FEC group.

4. Connection Migration: Instead of the 4-word set of source and destination IP ad-
dresses and crucial communication port numbers, QUIC connections are identified
by a 64-bit connection identifier.

De Biasio et al, in [6] replicated The QUIC protocol into discrete simulation tools
NS-3 that we will explain in section II.C in urge demand of RFC submission of QUIC
Protocol into IETF as HTTP/3 implementation.

The research conducted by extended TCP module with features that assimilate
QUIC in terms of stream multiplexing, low-latency initial handshake, improved
SACK through ACK frames. QUIC Protocol is tested by measuring the Round Time
Trip (RTT) TCP congestion control such as New Reno, Vegas, and Look like New
Reno with additional flavor of QUIC Protocol.



IJECBE 47

2.2 Practical Byzantine Fault Tolerance (PBFT)
The Practical Byzantine Fault Tolerance (PBFT) is a consensus algorithm that was
originally developed as a mechanism for ensuring the integrity of distributed net-
works that was introduced by Castro and Liskov [7]. To add the next block, this
algorithm requires that all nodes participate in the voting process with minimum of
3f+1 nodes participated for anticipated f nodes of failure. A two-thirds majority or
minimum of 2f+1 vote is required as a quorum to reach an agreement. PBFT has
three important components: view, primary, and replica. Replica nodes are used to
ensure the effectiveness of the voting process. To ensure network integrity, the PBFT
algorithm sends and receives a lot of messages between nodes [8]. So far, many PBFT
patches have been developed. Delegated BFT is not the same as PBFT. For example,
not all nodes, but only some delegates, participate in the voting process. Validators
construct and propose new transaction blocks using Simplified BFT, a Byzantine fault
tolerance technique.

PBFT works with five phases, there is request, pre-prepare, prepare, commit and
reply [9]. Figure 1 describes how PBFT works in case 4 nodes to tolerate 1 failure.
When request phase sent by Client to the primary node, then it forwards messages
to the other three nodes. If node 3 fails, a single message is sent to all the nodes in
a five-step process to obtain a consensus. Finally, to finish the consensus round in
commit phase each node needs minimum 2f+1 vote to agree the consensus then send
reply message to client. In each consensus round, PBFT assures that nodes maintain
a common state and conduct consistent actions. The PBFT protocol is a consensus
protocol because it achieves a high level of consistency. [4, 9].

Figure 1. Single-layer PBFT consensus processing [7]

2.3 NS-3
NS-3 [10] is a simulator device used to simulate net systems, wi-fi networks, etc. The
competencies of this simulator device are constructed at the GNU/Linux system. Some
of the stairs utilized in NS-3 are topology definition, version building, hyperlink and
node configuration, execution, overall performance analysis, and photo visualization.
NS-3 works as discrete simulator that represents system behavior as a series of (discrete)
temporal events. Each event occurs at a specific point in time and indicates a change in
the status of the system [6]. No changes are expected to occur in the system between
consecutive events. As a result, the simulation time can skip straight to the time of the



48 Thio Lutfi Habibi et al.

next occurrence. The next event is referred to as the passage of time [7].
Some of the benefits of the NS-3 in comparison to the preceding model is that the

NS-3 is extra documented than the NS-2 and is continually up to date concerning
tendencies that arise in new technology and NS-3 community actively conducted
paper submission about new protocol or RFC simulation then it encourages NS-3
have more module that can represent new technologies in real world problem. This
simulator device is modular, in step with actual conditions, and helps integration with
virtual environment.

To measure or know the performance of a protocol, a simulation tool is needed.
One of the widely used network simulation tools is NS-3 [10]. NS-3 or Network
Simulator 3 is a discrete event simulator to perform simulations on protocols or
network infrastructure that currently exists and is usually used in the scope of research
and learning by performing how packet and data network works [11], NS-3 is also
an open-source platform which means that the source code can be downloaded freely
and can be modified by the user. NS-3 itself has quite a capability, it supports many
network protocols currently available. The NS-3 is also equipped with many modules
which can be further developed by contributors. This simulator also allows running
simulations in parallel and in a distributed manner.

2.4 Blockchain Consensus Simulator
Zhayujie, has developed simulations of blockchain consensuses namely PBFT, Raft,
and Paxos using UDP protocol based on NS-3 version 3.29 [12]. This project tries to
model the relationship between blockchain performance and several aspects such as
network scale, block size, bandwidth, delay, and others. In this research we adopted
flow works simulation of PBFT consensus and modified it to be ready implemented
with any other protocol with TCP and QUIC.

3. QUIC Protocol and Blockchain: An Overview
With the submission of the QUIC Protocol into the IETF proposal as an HTTP/3
implementation, the need for Application Layer development simulations is increasing
because the position of the QUIC Protocol working at the transport layer will affect
the layer above it. In a simulation study of the QUIC protocol using NS-3 [6], the
implementation of the QUIC protocol is based on RFC revision 113, which shows an
increase in performance in the transport layer. In this study, we make substitute to
the TCP Socket Protocol to meet the characteristics of the QUIC protocol, namely
utilizing UDP Datagram transport which has TCP reliability capabilities such as
congestion control and reduction of the initial handshake delay. This research will help
open the door to development on other application layers for testing and simulation
development.

Blockchain as a technology that utilizes a linked list of nodes that are integrated
with each other to form a large data block is based on a certain consensus. In the
development of Blockchain transactions, especially at the message propagation stage
through the consensus method. Transaction performance development research mostly
concentrates on developing consensus methods, in some research method development,
especially research [13] on development plans also consider the implementation of



IJECBE 49

the QUIC protocol, however this idea is not proceeded because Blockchain is peer-
to-peer communication while QUIC do not have special treatment for peer-to-peer
communication.

Practical Byzantine Fault Tolerance (PBFT) [14] is a consensus algorithm in the
blockchain for use in enterprise consortiums where some members or nodes on the
blockchain are made trusted. PBFT uses a three-phase commit protocol set by the
ledger to approve incoming requests. With three-phase commit and replication, the
PBFT is more redundant in terms of communication, and the elements of the PBFT
phase are divided into phases: request, pre-prepare, prepare, commit, and respond
with a minimum total message count replica of 1 + 3f + 3f(3f-f ) + (3f-f+1)(3f+1) +
3f-1 [9]. So, to run PBFT consensus with a maximum of 2 node failures, a minimum
message communication of 71 total messages for 1 request will be required.

While PBFT performed well in terms of latency, resource requirements, and node
complexity, node scalability, the PBFT bottleneck is node scalability, a statistic that
measures how effectively a network represents a system’s ability to accommodate an
increasing number of nodes [8] because many relies on inter-site communication
[15]. This is a motivational research question for the implementation of the QUIC
protocol that utilized UDP Datagram above TCP reliability and congestion control in
the Blockchain environment since PBFT algorithm intensively exchanges messages
between nodes to ensure network integrity [8].

The problem of protocol agreement in PBFT has attracted attention in research [9]
which focuses on the problem of PBFT agreement processes that requires replication,
especially if the nodes are used in large numbers which of course will increase execution
time as overhead time and how to reduce the overhead time. The QUIC protocol
is one of the recommended solutions to emphasize the need for overhead time with
the assumption that the QUIC Protocol will help speed up the message replication
process, however in this study the solution is still a perspective view, no simulation
has been carried out to see the role of the QUIC protocol in reducing overhead time.

4. Simulation
4.1 Simulation Environments
The simulation uses a virtual machine with specifications of 6 vCPU and 12GB
Memory, using Virtualized Environment Ubuntu 20.04 operating system. NS-3 used
is version 3.37. QUIC NS-3 module version 1.0 has been used and was released in
November. 13, 2020, without making any module changes.

The NS3 QUIC Protocol module is used as a baseline for the NS-3 blockchain
simulator which will later be used as a communication protocol in the consensus PBFT
to be simulated. The Socket Class will be a variable to play a role in swinging between
UDP, TCP and the QUIC Protocol, other variables that take a part of experiment
will be explained in Section IV.B. On the other hand, PBFT Consensus Simulation
[12], needs to be adjusted to comply with our experiment since the simulation code
designed for UDP Protocol. To implement TCP and QUIC Protocol the simulator
must support connection handshake and stream buffer since there are probable the
packet needs to be fragmented. The implementation flow of the NS-3 module as
illustrated in Figure 2; we integrate both modules into single NS-3 to keep computing



50 Thio Lutfi Habibi et al.

performance as a constant variable.

Figure 2. Flow Simulation Design

4.2 Blockchain Consensus Simulator
To carry out the simulation, it will be implemented with the parameters used for the
values that will be implemented in the simulation. Parameters will determine the
performance load, parameter values for the simulation are described in Table 1.

Table 1. SIMULATION PARAMETER

Country List

Parameter Value

Data Rate 3 Mbps
Delay 3 ms
Nodes 4, 8, 16, 32
Protocol UDP, TCP, and QUIC
QUIC Congestion Control Vegas, NewReno, BIC and

QUIC Bbr
Size (Data Rate) * (2*Delay)
N-Iteration AO & 40
Simulation Tool NS-3

First, we run the simulation using a blockchain simulator in [12] for the UDP
Protocol as a default simulation. The results of the simulation are recorded for
their time iteration in PBFT consensus as mentioned in Section III.B. Furthermore,
modifications were made to the TCP and QUIC simulation source code by merging
the blockchain module in [12] into the module in [6]. Finally, we run a blockchain
simulation using the QUIC protocol, and record the iteration result using PBFT
consensus.



IJECBE 51

In the scenario, we conducted simulation using four nodes’ sets are 4, 8, 16 and 32
as message propagation node for represent condition up to 10 nodes failure. Delay
of 3ms represented as a simulation conducted in LAN with 3 Mbps connection. N-
Iteration means number of repetition simulation from first broadcast by initial node
until have 40th commit steps of replication in full mesh network as represented in
Figure 3. We prepare four congestion control algorithms of QUIC Protocol to
measure adjustment that could adjust performance, there are three well known TCP
congestion algorithms Vegas, New Reno, and BIC, then the last one is QUIC BBR
that as a modified algorithm in NS-3 QUIC Module to comply QUIC behavior.
Packet Size we use proportionally between (DataRate) ∗ (2 ∗ Delay) as a dumbbell,
that means size will be maximum capacity of bandwidth take round trip for each pair
of nodes.

Figure 3. Topology and Flow Communication

As represented in Figure 3, each node will replicate each other in every step of
PBFT phase request, pre-prepare, prepare, commit, and respond. In each stage we
measure average time from each node to replicate their data and represent them as time
execution in that phase. We recorded the time taken to execute the iteration process in
the consensus PBFT. The iteration is the replication process carried out by nodes in 1
transaction, after one node receives the call, The node will broadcast it to the adjacent
node and the rest of the node will follow until the communication convergent. The
total number of iterations follows the formula 1+3f +3f (3f –f )+(3f –f +1)(3f +1)+3f –1
with f as the number of faults nodes.

The transaction process is divided into NEW ROUND, PRE-PREPARED, PRE-



52 Thio Lutfi Habibi et al.

PARED, COMMIT, COMMITTED, FINAL COMMITTED, and ROUND CHANGE,
with New Round and Round Change being the staging step process between itera-
tions, so there are 5 PRE-PREPARED, PREPARED, COMMIT, COMMITTED,
and FINAL COMMITTED. Then we recorded the execution time of the first 40
transactions in seconds, representing the 5 main steps in the PBFT. Details of the
formulation are discussed in Section III.C.

4.3 Gauges Calculated
In this research, observations, and records of time in each cycle of the consensus PBFT
are carried out for each node. Each iteration describes the process of propagation and
replication at each node in the consensus PBFT. The time required for each node in
the iteration is averaged as a representation of the time required for replication and
propagation in each stage, which is described in the following Equation 1 and 2.

T = [tl]∀i∈{1,...,n} (1)

tl =

[∑m
j=1 ti
m

]
∀j∈{1,...,m};m∈{4,8,16,32}

(2)

Equation 1 represents T as a set value of the average time required for each iteration
from 1 to n. The average time required for each n iteration is represented by the
amount of time required by each node 1 to m, divided by the number of nodes m
described by Equation 2. The representation of time is represented by T for each m
set of the number of nodes used in this study, namely 4, 8, 16 and 32.

5. Result and Analysis
Based on simulation we conducted and explained in Section III, we use 4 scenarios with
the number of nodes starting from the 4, 8, 16 and 32. We represent the result of the
experiment in figures of total time execution for each protocol UDP, TCP and QUIC,
average time of each iteration for all protocol and comparison total time execution for
each congestion control in QUIC Protocol. Based on the results obtained, generally
UDP and TCP have better performance compared to QUIC protocol. UDP still has
the best performance compared to TCP, but only a few milliseconds. The performance
of the QUIC protocol appears to be affected by the congestion algorithm, where for
each algorithm the effect of the execution time is quite different.

Table 2. TOTAL TIME EXECUTION FOR 40th ITERATION (SECONDS)

Based on Table 2 and Figure 5 provides an overview of the total time execution
each protocol for a given set number of nodes. TCP and UDP have the best perfor-
mance compared to QUIC Protocol, with total time execution around 4 seconds with



IJECBE 53

difference between TCP and UDP only around 0.03 seconds at most. QUIC total
time execution around 5.89 seconds there is a gap time of almost 2 seconds in each set
number of nodes.

Figure 4. Breakdown of The Average Time for 16 Nodes Case Iteration

From Figure 4, each protocol shows a stable average execution time in each
iteration. UDP and TCP do not have any significant differences for average time
execution, the average execution time for 16 nodes for the UDP protocol is 0.1022
seconds, for the TCP protocol it is 0.1028 seconds, while for the QUIC protocol it is
0.1460 seconds. Unlike the total time execution with a 2 second gap between QUIC
and UDP/TCP, the average time iteration is only 0.04 seconds different.

If we focused on execution time of each set number of nodes, UDP and TCP
showed trends that for each set growth around 0.06 to 0.1 seconds. For example,
UDP time execution for 4 nodes is 4.033 second and for 8 nodes is 4.138 second there
are raising around 100 milliseconds, then 60 milliseconds for 16 nodes, for last set 32
nodes 30 milliseconds. The same pattern happens in TCP Protocol, from 4 to 8 nodes
raising around 80 milliseconds then 60 milliseconds and 30 milliseconds for 16 and 32
nodes.

In the other hand, QUIC protocol does not show any significant time execution
in every set number of nodes, the increment not more than 0.2 milliseconds. This
shows that for UDP and TCP the execution time will be directly proportional to
the number of nodes communicating with each other, in the opposite pattern the
QUIC protocol shows that changes in the variable number of nodes do not give a
significant change, namely at 0.2 milliseconds. If this pattern is continued, then at a
very large number of certain nodes there will be a turning point in the comparison of
UDP/TCP vs QUIC protocol.

For further analysis, a comparison will be made to the implementation of the
congestion control algorithm in the QUIC protocol to see the performance impact
on execution time. Based on Figure 6, there are contrasting patterns for the New
Reno and Vegas algorithms compared to the BIC and QUIC BBR algorithms. For
the new Reno and Vegas algorithms, the execution time reaches 6.25221 seconds for



54 Thio Lutfi Habibi et al.

Figure 5. Average Iteration Time for TCP vs QUIC Protocol

40 iterations, with a difference of almost 0.5 seconds against the BIC and QUIC BBR
algorithms with an execution time of 5.89087 seconds. The QUIC BBR algorithm is
congestion control specifically for the QUIC protocol while the TCP BIC algorithm
used is a TCP congestion module that is compatible with the implementation of the
QUIC protocol.

6. Conclusions
Protocol is the foundation technology in ICT communication technology that allows
communication between two nodes. We can ensure that data transport is success-
ful using this protocol technology. The advancement of protocol technology can
compensate for prior technological shortcomings and improve data transmission.

The PBFT algorithm excessively exchanges messages between nodes to preserve
network integrity, the ability to transfer UDP datagrams with the congestion control
capabilities of TCP becomes vital component. Furthermore, QUIC’s ability to en-
crypt UDP datagrams ensures the security of communications within the blockchain
ecosystem.

In this paper, comparison between UDP, TCP and QUIC protocol in blockchain
infrastructure in terms of time needed for established consensus in PBFT algorithm.
Based on the simulation that has been conduct in Section III we found that in our set
number of nodes UDP and TCP showing better time execution than QUIC Protocol,



IJECBE 55

Figure 6. Impact of Congestion Control to Time Execution

however QUIC showing that addition number of nodes not giving significant time
execution compared to TCP Protocol, we assume that in larger set number of nodes
there are turning point that QUIC Protocol have better time execution than TCP
Protocol. Furthermore, QUIC Protocol still have plenty of room for improvement
that proved by changing congestion algorithms give result better time execution. In
our study result, QUIC BBR and TCP BIC give better improvement.

To show more in-depth performance of QUIC Protocol in PBFT consensus,
we deducted that need deeper investigation in existing communication algorithm to
leveraging QUIC protocol as transport layer and testing with more nodes to prove
that turning point QUIC Protocol vs TCP Protocol in larger number of dataset.

References
[1] Michele Polese et al. “A Survey on Recent Advances in Transport Layer Protocols”. In: Commun.

Surveys Tuts. 21.4 (Oct. 2019), pp. 3584–3608. ISSN: 1553-877X. DOI: 10.1109/COMST.2019.
2932905. URL: https://doi.org/10.1109/COMST.2019.2932905.

[2] Péter Megyesi, Zsolt Krämer, and Sándor Molnár. “How quick is QUIC?” In: 2016 IEEE International
Conference on Communications (ICC). 2016, pp. 1–6. DOI: 10.1109/ICC.2016.7510788.

[3] Satoshi Nakamoto. “Bitcoin: A peer-to-peer electronic cash system”. In: Decentralized business review
(2008).

[4] Peter Foytik et al. “A Blockchain Simulator for Evaluating Consensus Algorithms in Diverse
Networking Environments”. In: 2020 Spring Simulation Conference (SpringSim). 2020, pp. 1–12. DOI:
10.22360/SpringSim.2020.CSE.003.

[5] Saif Talib Albasrawi. “Performance analysis of Google’s Quick UDP Internet Connection Protocol
under Software Simulator”. In: Journal of Physics: Conference Series 1591.1 (July 2020), p. 012026. DOI:
10.1088/1742-6596/1591/1/012026. URL: https://dx.doi.org/10.1088/1742-6596/1591/1/012026.



56 Thio Lutfi Habibi et al.

[6] Alvise De Biasio et al. “A QUIC Implementation for Ns-3”. In: Proceedings of the 2019 Workshop
on Ns-3. WNS3 ’19. Florence, Italy: Association for Computing Machinery, 2019, pp. 1–8. ISBN:
9781450371407. DOI: 10.1145/3321349.3321351. URL: https://doi.org/10.1145/3321349.3321351.

[7] Miguel Castro, Barbara Liskov, et al. “Practical byzantine fault tolerance”. In: OsDI. Vol. 99. 1999.
1999, pp. 173–186.

[8] Yaroslav Meshcheryakov et al. “On Performance of PBFT Blockchain Consensus Algorithm for
IoT-Applications With Constrained Devices”. In: IEEE Access 9 (2021), pp. 80559–80570. DOI:
10.1109/ACCESS.2021.3085405.

[9] Shijie Zhang and Jong-Hyouk Lee. “Analysis of the main consensus protocols of blockchain”. In:
ICT Express 6.2 (2020), pp. 93–97. ISSN: 2405-9595. DOI: https://doi.org/10.1016/j.icte.2019.08.001.
URL: https://www.sciencedirect.com/science/article/pii/S240595951930164X.

[10] URL: https://www.nsnam.org/docs.

[11] Rishav Halder et al. “NS3TCG: NS3 Topology and Code Generator”. In: 2018 International Conference
on Recent Innovations in Electrical, Electronics & Communication Engineering (ICRIEECE). 2018, pp. 865–
870. DOI: 10.1109/ICRIEECE44171.2018.9008653.

[12] Zhayujie. Blockchain Simulator. https://https://github.com/zhayujie/blockchain-simulator. 2022.

[13] Wei Bi, Huawei Yang, and Maolin Zheng. “An accelerated method for message propagation in
blockchain networks”. In: arXiv preprint arXiv:1809.00455 (2018).

[14] Du Mingxiao et al. “A review on consensus algorithm of blockchain”. In: 2017 IEEE International
Conference on Systems, Man, and Cybernetics (SMC). 2017, pp. 2567–2572. DOI: 10.1109/SMC.2017.
8123011.

[15] Wenyu Li et al. “A Scalable Multi-Layer PBFT Consensus for Blockchain”. In: IEEE Transactions on
Parallel and Distributed Systems 32.5 (2021), pp. 1146–1160. DOI: 10.1109/TPDS.2020.3042392.


