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Abstract
Automated Short Answer Grading (ASAG) is crucial for scalable feedback, but applying
it to low-resource languages like Indonesian is challenging. Modern Large Language
Models (LLMs) severely overfit small, specialized educational datasets, limiting utility.
This study compares nine traditional machine learning models against two fine-tuning
strategies for Gemma-3-1b-it on an expanded Indonesian ASAG dataset (n=220): (a) stan-
dard fine-tuning predicting only scores, and (b) a proposed reasoning-guided approach
where the model first generates a score rationale using knowledge distillation before pre-
dicting the score. The reasoning-guided model (Gemma-3-1b-ASAG-ID-Reasoning or
G-R) achieved state-of-the-art performance (QWK 0.7791; Spearman’s 0.8276), signifi-
cantly surpassing the best traditional model in this study (SVR, QWK 0.6952). This work
advances foundational LSA-based approaches for this task by introducing a more robust
methodology and evaluation framework. Crucially, standard fine-tuning (Gemma-3-
1b-ASAG-ID or G) suffered catastrophic overfitting (QWK 0.7279), indicated by near-
perfect training but poor test scores. While the reasoning-guided LLM showed supe-
rior accuracy, it required over 35 times more inference time. Results demonstrate that
distilled reasoning acts as a powerful regularizer, compelling the LLM to learn underly-
ing grading logic rather than memorizing pairs, establishing a viable method for high-
performance ASAG in data-scarce environments despite computational tradeoffs.

Keywords: Automated Short Answer Grading (ASAG), Large Language Models, Reasoning-Guided
Fine-Tuning
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1. INTRODUCTION

The integration of Artificial Intelligence (AI) into modern educational practices is
rapidly transforming pedagogical approaches and administrative efficiencies. Among
the diverse applications of AI in education, Automated Short Answer Grading (ASAG)
has emerged as a particularly impactful technology [1]. ASAG systems offer the po-
tential to provide students with scalable, consistent, and timely feedback, thereby
alleviating the substantial workload traditionally borne by instructors [2]. The ca-
pacity of ASAG to process unlimited submissions without additional human resources
makes it invaluable for large student cohorts where manual grading would be logis-
tically prohibitive [3]. Furthermore, automated systems can enhance objectivity by
applying identical criteria to every submission, mitigating the variability and poten-
tial unconscious biases that can influence human graders [4]. Research has docu-
mented significant grading inconsistencies in traditional assessment methods, with
studies revealing sequential bias where assignments graded later in sequences receive
systematically lower scores [5]. The halo effect, where prior positive or negative
impressions of students influence subsequent grading decisions, has been empirically
demonstrated to create unfair assessment outcomes [6]. Additionally, grading fatigue
has been shown to impair judgment quality over time, with teachers demonstrating
decreased assessment accuracy as mental fatigue accumulates during extended grad-
ing sessions [7]. The provision of rapid feedback is another cornerstone of ASAG’s
utility, as immediate assessment outcomes are crucial for effective student learning
cycles [8], a stark contrast to traditional grading timelines where delays can dimin-
ish pedagogical impact. By automating a significant portion of the grading process,
ASAG can free educators from time-consuming tasks, allowing them to redirect their
efforts towards more personalized student interactions, curriculum refinement, and
other higher-value pedagogical activities. Studies have documented substantial time
savings, with computer-assisted grading rubrics demonstrating efficiency improve-
ments of 200-350% compared to traditional manual grading methods [3]. This shift
suggests that ASAG is not merely an efficiency tool but can act as a catalyst for peda-
gogical innovation. The ability to generate detailed analytics on student performance
across large cohorts and facilitate adaptive learning pathways indicates that ASAG can
empower educators with data-driven insights, fostering more dynamic, responsive,
and personalized teaching methodologies [9]. Recent advances in large language
models have further enhanced ASAG capabilities, with systems achieving grading
accuracy comparable to human evaluators while providing comprehensive feedback
[10].

Despite the transformative potential of ASAG, its widespread adoption and opti-
mal performance are hindered by two primary obstacles: the "resource gap" and the
"data dilemma." The resource gap refers to the pronounced concentration of Nat-
ural Language Processing (NLP) research, development, and available resources on
high-resource languages, predominantly English [11]. This leaves languages such
as Indonesian, spoken by millions, significantly underserved in terms of advanced
NLP tools and datasets [12]. The scarcity of comprehensive datasets for languages
like Indonesian poses a formidable barrier to building robust NLP applications [13].
Compounding this issue is the "data dilemma" inherent in leveraging state-of-the-
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art models, particularly Large Language Models (LLMs). LLMs represent the cutting
edge for many NLP tasks due to their sophisticated understanding and text genera-
tion capabilities [14]. However, these models are notoriously "data-hungry." When
applied to small datasets, a common scenario in specialized real-world educational ap-
plications (e.g., answer sets from a single academic course), LLMs are highly prone to
overfitting [15]. Overfitting occurs when a model learns the noise and specific details
of the training data rather than generalizable patterns, leading to excellent perfor-
mance on training data but poor performance on unseen data. LLMs, with their vast
number of parameters, "can indeed overfit a small dataset" because their high capac-
ity allows them to "memorize examples" instead of learning the underlying features
[16]. These two challenges, linguistic resource scarcity and the data-intensive nature
of LLMs, create a compounded problem for developing advanced ASAG systems in
contexts like Indonesia. Educational datasets are often niche and small by nature; for
a low-resource language, this scarcity is amplified, making the successful deployment
of powerful LLMs exceptionally difficult without specialized mitigation strategies.

To address this amplified challenge, this paper develops and evaluates a robust,
highperforming ASAG system for the Indonesian language within a pragmatically
low-resource context. We investigate whether a novel fine-tuning strategy can over-
come the critical issue of model overfitting, which severely limits the utility of stan-
dard LLM approaches when applied to small, specialized educational datasets. This
work aims to establish a viable methodology for deploying powerful language models
in data-scarce environments.

This research’s primary contribution is the introduction and validation of a novel
fine-tuning methodology that leverages distilled reasoning as an effective structural
regularizer for Large Language Models. We demonstrate that this "reasoning as reg-
ularization" approach directly addresses the critical challenge of catastrophic over-
fitting, a common failure point when applying standard LLMs to specialized, low-
resource datasets. To validate this method, our reasoning-guided model was bench-
marked against ten other approaches—including traditional machine learning base-
lines and a standard fine-tuned LLM—on an expanded Indonesian ASAG dataset.
The results show that our model not only avoids the severe overfitting of its stan-
dard counterpart but also achieves state-of-the-art performance in grading accu-
racy and rank-order consistency. Finally, the study provides a critical analysis of the
performance-cost trade-offs, quantifying the substantial computational requirements
of the proposed method, which is vital information for real-world implementation.

2. Related Works
This section provides a conceptual background for the technologies and methodolo-
gies employed in this study, positioning our work within the broader landscape of
ASAG and NLP research.

2.1 Traditional and Embedding-based ASAG
Early approaches to Automated Short Answer Grading often relied on extracting ex-
plicit linguistic features or employing corpus-based semantic similarity techniques.
Among these, Latent Semantic Analysis (LSA) gained prominence [17]. LSA utilizes
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mathematical methods to infer relationships between words and documents by an-
alyzing their contextual usage within large text corpora. It represents both words
and text passages as vectors in a high-dimensional semantic space, allowing for the
computation of semantic similarity even in the absence of direct keyword overlap.
For instance, LSA could identify the semantic connection between phrases like "no
more dinner" and "skip breakfast" by recognizing the semantic relatedness of "din-
ner" and "breakfast" as meals [18]. However, while LSA proved effective for scoring
longer essays, its application to short, open-ended answers encountered challenges.
These included the limited amount of text available for analysis in short responses
and difficulties in accommodating the complexity and nuance often present in such
answers. Furthermore, the performance of LSA-based systems is inherently tied to
the quality of the human ratings used in their training.

The limitations of early feature-based methods spurred a transition towards the
use of dense vector embeddings to capture richer and more nuanced semantic similar-
ities between student answers and reference texts. A significant advancement in this
area was the development of Sentence-BERT (SBERT) [19]. SBERT modifies the
BERT architecture to derive meaningful, fixed-size sentence embeddings. It typi-
cally employs a Siamese or biencoder structure, where two sentences are processed
independently and in parallel through identical BERT networks. The resulting to-
ken embeddings are then pooled (e.g., using mean pooling) to produce a single vector
representation for each sentence. This architecture is considerably more efficient for
sentence similarity tasks than traditional BERT cross-encoder setups, which require
feeding both sentences simultaneously into the model and exhibit quadratic com-
putational complexity for pairwise comparisons. The SentenceTransformers library
[20] provides a widely adopted and practical framework for implementing SBERT
and similar models, facilitating tasks such as semantic textual similarity and infor-
mation retrieval. In the context of the present study, sentence embeddings derived
from such architectures form the core features for the traditional machine learning
baseline models.

The evolution from LSA to SBERT illustrates an ongoing pursuit of more sophis-
ticated semantic understanding in ASAG. LSA offered an initial step beyond keyword
matching, but SBERT, leveraging the power of transformer architectures, provided
more contextually rich and potent embeddings for capturing subtle semantic rela-
tionships. However, even advanced similarity metrics derived from SBERT primar-
ily focus on semantic overlap. The task of grading, particularly for complex subjects,
often requires inferential steps, evaluation of reasoning, and assessment of complete-
ness and accuracy that go beyond mere similarity. This sets the stage for investigating
more powerful generative models capable of these deeper levels of analysis.

2.2 Generative Large Language Models in NLP
The field of Natural Language Processing has witnessed a significant paradigm shift
from task-specific models, such as BERT, to large-scale, generative models. BERT
(Bidirectional Encoder Representations from Transformers) [21] was a revolutionary
development, primarily due to its ability to understand context bidirectionally by
pre-training on masked language modeling and next sentence prediction tasks. This



624 Muhammad Naufal Faza et al.

made BERT and its variants exceptionally effective as encoders for tasks requiring
deep contextual understanding, such as text classification, named entity recognition,
and the generation of high-quality word and sentence embeddings.

However, the landscape has increasingly been dominated by generative Large
Language Models (LLMs), including OpenAI’s Generative Pre-trained Transformer
(GPT) [22] series and Google’s Gemma 3 family [23]. These models are typically
characterized by their decoder-only, autoregressive architectures. They are pre-
trained on vast amounts of text data to predict the next token in a sequence, a pro-
cess that endows them with a remarkable ability to generate coherent, contextually
relevant, and human-like text based on input prompts or instructions. This genera-
tive capability, coupled with their capacity for zero-shot and few-shot learning (i.e.,
performing tasks with minimal or no task-specific examples) and sophisticated in-
struction following , makes them prime candidates for complex and nuanced tasks
like ASAG. Such tasks may involve not only assigning a score but also generating
explanations, providing detailed feedback, or evaluating the reasoning presented in a
student’s answer.

The move towards generative LLMs like GPT and Gemma for ASAG is moti-
vated by the understanding that grading often demands more than semantic simi-
larity assessment (a strength of SBERT-like models) or text classification (a strength
of BERT-like encoders). Effective grading frequently requires the interpretation of
instructions, evaluation against multifaceted criteria, and, ideally, the generation of
justifications or feedback, all tasks at which generative models excel. The reasoning-
guided approach proposed in this study, for instance, explicitly requires the model to
generate an analytical rationale. This necessitates the generative prowess offered by
models like Gemma 3, distinguishing them from earlier encoder-focused architec-
tures.

2.3 Parameter-Efficient Fine-Tuning (PEFT)
The immense scale of modern LLMs, often comprising billions or even trillions of
parameters, presents a significant practical challenge: fully fine-tuning these models
for every new downstream task or dataset is computationally prohibitive for most
researchers and organizations. This process demands substantial GPU memory, vast
amounts of task-specific data, and extensive training time.

Parameter-Efficient Fine-Tuning (PEFT) [24] encompasses a family of techniques
developed to address this challenge. PEFT methods enable the adaptation of large
pre-trained models to specific tasks by fine-tuning only a small subset of the model’s
parameters, or by introducing a small number of new, trainable parameters, while
keeping the vast majority of the original model weights frozen. This approach offers
several key advantages: significantly reduced GPU memory requirements (often al-
lowing fine-tuning on consumer-grade hardware), faster training iterations, smaller
storage footprints for the resulting adapted models (as only the small set of changed
parameters needs to be saved), and a reduced risk of "catastrophic forgetting," where
the model loses its general capabilities learned during pre-training.

Low-Rank Adaptation (LoRA) is a particularly popular and effective PEFT tech-
nique [25]. LoRA operates by injecting trainable, low-rank decomposition matrices
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into specific layers of the Transformer architecture (typically the attention layers).
Instead of fine-tuning the original weight matrices, LoRA introduces two smaller
matrices whose product represents the change in weights. Only these low-rank ma-
trices are trained. Since the rank is chosen to be much smaller than the original
dimensions of the original weights, the number of trainable parameters is drastically
reduced. The LoRA-specific hyperparameters, rank and alpha (a scaling factor), are
specified in this study’s methodology, indicating its use.

PEFT techniques, especially LoRA, are not merely efficiency optimizations; they
are critical enablers for applying LLMs to specialized, low-resource tasks such as the
Indonesian ASAG problem investigated in this paper. Without PEFT, attempting to
fine-tune a model like Gemma-3-1b-it on a dataset of only 220 samples would be
highly impractical and resourceintensive, likely leading to severe overfitting even if
computationally feasible for some. PEFT makes such targeted adaptations accessi-
ble and manageable, forming a foundational component of this study’s experimental
design.

2.4 Eliciting Reasoning in Large Language Models
A growing body of research has demonstrated that the performance of LLMs on com-
plex tasks requiring multi-step deduction can be significantly improved by prompting
them to generate intermediate reasoning steps, effectively "thinking step-by-step"
before producing a final answer. This approach aims to guide the model through a
more structured thought process, mirroring human cognitive strategies for problem-
solving.

The seminal work in this area is the introduction of Chain-of-Thought (CoT)
prompting by Wei et al. [26]. CoT prompting is a technique that encourages LLMs
to articulate a series of intermediate reasoning steps that logically lead to the final
answer. For instance, when solving a math word problem, instead of directly out-
putting the numerical solution, a CoT-prompted LLM would first generate the se-
quence of calculations and logical inferences required to arrive at that solution. This
explicit generation of a "chain of thought" has been shown to markedly improve
LLM performance on a variety of tasks, including arithmetic reasoning, common-
sense reasoning, and symbolic manipulation. A key benefit of CoT is the increased
transparency it offers into the model’s decision-making process; the explicit reason-
ing steps can be inspected to understand how the model reached its conclusion, aiding
in debugging and building trust.

The work of Wei et al. [26] on zero-shot and few-shot CoT prompting serves as a
direct inspiration for the supervised fine-tuning target employed in the present study.
However, this study takes the concept a step further. Instead of relying solely on
prompting strategies at inference time to elicit reasoning, our proposed methodology
trains the smaller student LLM (Gemma-3-1b-it) to explicitly generate an analytical
reasoning step as an integral part of its output. The "ground truth" reasoning for
this training is created through knowledge distillation, where a larger, more capable
teacher model (DeepSeek R1-0528 [27]) generates these analytical rationales for each
sample.

This approach signifies an evolution from CoT as an inference-time prompting
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strategy to CoT-like reasoning as an ingrained, learned capability of the model. By
making the generation of a coherent rationale a direct supervised learning objective,
the aim is to instill a more robust and reliable reasoning faculty within the smaller
student model. This contrasts with relying on the emergent reasoning abilities that
are typically elicited by specific prompt phrasing in much larger models. The hy-
pothesis is that this supervised learning of reasoning will be more effective for smaller
models operating in low-data regimes and, critically, that the process of learning to
generate such reasoning will act as a powerful regularizer, which is central to this
paper’s thesis.

2.5 NLP and ASAG in the Indonesian Context
The Indonesian language (Bahasa Indonesia), despite being the national language of
a populous country and a lingua franca for millions, is generally considered a low-
resource language in the context of NLP development. While there has been a no-
table increase in advancements since approximately 2020, a significant disparity re-
mains compared to high resource languages like English. Key models developed for
Indonesian include IndoBERT (a BERT-based model for Indonesian understanding
tasks) [28], NusaBERT (a multilingual extension of IndoBERT covering Indonesian
and several regional languages) [29], and IndoT5 (a T5-based sequence-to-sequence
model for Indonesian generation tasks) [30]. Despite this progress, the overall avail-
ability of large-scale, high-quality datasets and specialized NLP tools for Indonesian
remains limited.

The specific task of Indonesian ASAG, and the dataset it is based on, was foun-
dationally explored by Ratna et al. [31]. Their pioneering research developed an
automatic grading system by first using a Support Vector Machine (SVM) to classify
answers by topic, then employing Latent Semantic Analysis (LSA) to score the se-
mantic similarity against a reference answer. Evaluated on a 148-sample version of
the dataset, their LSA-based scoring system achieved a reported accuracy of 72.01%.
This work was crucial in establishing the task’s feasibility with classic statistical NLP
methods. Our study revisits this regression problem but shifts the paradigm in two
significant ways: first, by replacing statistical similarity with generative fine-tuning,
and second, by employing a suite of modern evaluation metrics (e.g., QWK, Spear-
man’s) that are specifically designed for assessing ordinal agreement and rank-order
consistency in grading tasks.

Other notable contribution include the work by Wijaya [32], who developed an
automatic short answer grading system for Indonesian using BERT. Their method-
ology involved collecting short answers from high school students on Computer and
Information Technology subjects, preprocessing the data by concatenating questions
with student answers, tokenizing the combined text, and then fine-tuning a BERT
model. To manage complexity, they simplified the grading into a binary classifica-
tion task (correct vs. wrong). Their system achieved a Cohen’s Kappa coefficient of
0.75, with high precision (0.94) and recall (0.96) on this binary task, demonstrating
the feasibility of using transformer-based models for Indonesian ASAG. Other related
work in the Indonesian context includes studies on the utilization of NLP-powered
applications like Google Translate and Grammarly by students and educators, and
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the availability of general NLP libraries like spaCy with support for Indonesian [33].
The present study builds upon these foundational efforts while aiming to address
more profound challenges.

The present study builds directly upon the foundational efforts of Ratna et al.
[31] and the broader context provided by Wijaya [32]. However, our research is
designed to test a specific hypothesis, which requires a precise evaluation framework
and informs our choice of baselines relative to established Indonesian models like In-
doBERT, NusaBERT, and IndoT5. Our argument for the superiority of the proposed
model is two-fold. First, to justify using a complex LLM, we test whether the entire
paradigm is superior to traditional machine learning for this task by benchmarking
against a comprehensive suite of nine classical models. This allows us to evaluate
whether the LLM approach offers a substantial performance leap over established
methods like a highly tuned Support Vector Regressor. Second, and more critically,
we aim to prove why our specific fine-tuning method is superior in a low-resource
context. The central hypothesis is that using distilled reasoning as a co-training tar-
get acts as a powerful regularizer that mitigates the catastrophic overfitting seen in
standard LLM fine-tuning. To test this, the most direct and scientifically valid con-
trol is an identical base model (Gemma-3-1b-it) fine-tuned without the reasoning
component, allowing us to measure the direct effect of our method. This two-part
experimental design necessitates our specific choice of baselines; encoder-only mod-
els like IndoBERT, while important for Indonesian NLP, are architecturally unsuited
for the generative rationale task at the core of our hypothesis and would introduce
confounding variables, shifting the focus from a rigorous test of our methodology.
Thus, this study advances the state-of-the-art by distinguishing itself in several key
aspects:

1. It employs a more recent generative LLM, Gemma-3-1b-it, designed for instruc-
tion following and generation.

2. The task is more granular, involving the prediction of a numerical score on a
0-100 scale rather than binary classification.

3. A novel reasoning-guided fine-tuning methodology is introduced, incorporat-
ing knowledge distillation from a powerful teacher model to generate analytical
rationales.

4. The core investigation focuses on the role of this reasoning generation as a regu-
larization technique to combat the severe overfitting typically encountered when
applying LLMs to small datasets, a critical issue in low-resource language con-
texts.

5. The study utilizes a unique dataset format based on direct professor’s answer ver-
sus student’s answer comparisons.

Previous work, such as that by Wijaya [32], has confirmed the applicability of
transformer models for Indonesian ASAG. This study seeks to advance the state of
the art by leveraging more sophisticated LLMs for a more complex regression-based
grading task. More importantly, it introduces a specific methodological innovation,
reasoning-guided fine-tuning, explicitly designed to overcome the fundamental lim-
itation of data scarcity and the resultant LLM overfitting. By demonstrating that this
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approach can act as an effective regularizer, this research aims to provide a pathway
for developing more accurate and nuanced ASAG systems for Indonesian and poten-
tially other low-resource languages.

3. Methodology
This section details the experimental setup, including the dataset, model implementa-
tions, fine-tuning procedures, and evaluation protocol, to ensure the reproducibility
of our findings. The overall architecture of our proposed reasoning-guided method-
ology, encompassing both the knowledge distillation and fine-tuning in the training
phase and the final grading in the inference phase, is illustrated in Figure 1.

Figure 1. Architecture of the Proposed Reasoning-Guided Fine-Tuning Methodology

3.1 Dataset and Task Formulation
The dataset utilized in this study is an expanded and curated version of the corpus
introduced by Ratna et al. [31], now consisting of 220 Indonesian short answer pairs.
Each entry comprises a professor’s reference answer (jawaban_dosen), a student’s sub-
mitted answer (jawaban_mahasiswa), and a human-assigned numerical score (nilai)
on a scale of 0 to 100. The numerical scores were assigned by a single domain ex-
pert to ensure grading consistency across all samples. The descriptive statistics for the
scores across the entire dataset are: mean (π) = 75.36, standard deviation (σ) = 24.31,
minimum = 0, first quartile (25%) = 60, median (50%) = 80, third quartile (75%) =
100, and maximum = 100. The question-answer pairs in the dataset, while focused,
cover several core topics in computer science and engineering, providing thematic
diversity. These topics include: 1) Computer Architecture, with questions focused on
the foundational Von Neumann architecture and its main components (CPU, ALU,
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memory, I/O); 2) Processor Performance Technology, repeatedly explaining Intel’s
Turbo Boost feature and its function of automatically increasing a processor’s clock
frequency; 3) Network Models, addressing the client-server model and the respec-
tive roles of the client and server; and 4) Operating System Features, with answers
detailing the PC hibernation function and how it differs from sleep mode by saving
the system’s state to non-volatile storage.

The dataset was partitioned into training and testing sets using an 80/20 split,
resulting in 176 samples for training and 44 samples for testing. To ensure that both
sets were representative of the overall score distribution, a stratified splitting strategy
was employed based on score quantiles. The distribution of data across these quan-
tiles and splits is presented in Table 1. This stratification is particularly important
for small datasets, as it helps to prevent sampling bias and ensures that the model is
trained and evaluated on comparable data distributions, leading to more reliable and
generalizable results within the context of this dataset. The task is formulated as a re-
gression problem: given the professor’s answer and the student’s answer, the models
are trained to predict the numerical score.

Table 1. Dataset Score Distribution and Stratified Split

Statistic/Bin Combined (n=220) Train (n=176) Test (n=44)

Mean Score 75.36 74.99 76.82
Std. Dev. 24.31 25.12 21.00

Quantile Bins

Bin 0 (Scores ≤ 60) 64 (29.1%) 51 (29.0%) 13 (29.5%)
Bin 1 (70 ≤ Scores ≤ 80) 62 (28.2%) 49 (27.8%) 13 (29.5%)
Bin 2 (Scores = 90) 37 (16.8%) 30 (17.0%) 7 (15.9%)
Bin 3 (Scores = 100) 57 (25.9%) 46 (26.1%) 11 (25.0%)

The careful construction and splitting of this dataset are foundational to the study.
The stratified split ensures that the evaluation of models, particularly in a low-data
regime, is as fair and robust as possible by maintaining proportional representation
of score categories across the training and testing subsets. This minimizes the risk
that observed performance differences are mere artifacts of skewed data distributions
in the splits.

3.2 Baseline Model Implementation
Nine baseline models were implemented to provide a comprehensive comparison
against the LLM-based approaches. These models include:

1. Linear Regression (LinearR): A standard implementation with no hyperparam-
eter tuning.

2. Ridge Regression (RR): Tuned across 5 alpha values.
3. Lasso Regression (LassoR): Tuned across 5 alpha values.
4. Elastic Net Regression (ENR): Tuned using 3 alpha values and 3 L1_ratios (9

total combinations).
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5. Support Vector Regressor (SVR): Tuned across three kernels for a total of 20 com-
binations:

a) Linear Kernel: 4 C values.
b) Polynomial Kernel: 8 combinations (2 C values, 2 gamma values, 2 degree

values).
c) RBF Kernel: 8 combinations (4 C values, 2 gamma values).

6. Gradient Boosting Regressor (GBR): Tuned with 8 combinations (2 n_estimators,
2 learning_rates, 2 max_depths).

7. Random Forest Regressor (RFR): Tuned with 12 combinations (2 n_estimators,
3 max_depths, 2 min_samples_splits).

8. K-Neighbors Regressor (KNR): Tuned across 5 n_neighbors values.
9. Feed-forward Neural Network (NN): A specific architecture with layer sizes

of [385, 192, 96, 48, 1], 50% dropout in the first three layers, and trained for 40
epochs using an AdamW optimizer.

Feature engineering for these baseline models was conducted as follows: Sentence
embeddings for both the student’s answer and the professor’s answer were generated
using the intfloat/multilingual-e5-large-instruct model, a powerful multilingual sen-
tence encoder known for its strong performance on semantic representation tasks.
The final feature vector for each answer pair consisted of three components:

• A 1024-dimensional difference vector, calculated as (student_embedding - pro-
fessor_embedding). This vector aims to capture the semantic divergence between
the student’s and professor’s answers.
• A scalar feature representing the word count of the student’s answer.
• A scalar feature representing the word count of the professor’s answer.

Hyperparameters for seven of the nine baseline models (Ridge, Lasso, Elastic Net,
Support Vector Machine, Gradient Boosting, Random Forest, and K-Neighbors)
were optimized using a 5-fold cross-validation procedure on the training set to max-
imize their performance. The selection of a potent sentence embedding model and
the application of hyperparameter tuning for most baselines ensure that these tra-
ditional models serve as strong benchmarks. This robust baseline setup allows for a
fairer and more credible assessment of any performance gains achieved by the more
complex LLM-based approaches.

3.3 LLM-Based Approach
Two distinct LLM-based approaches were developed and evaluated, both centered
on the google/gemma-3-1b-it model.

google/gemma-3-1b-it was selected as the base model for fine-tuning due to its
favorable performance-to-size ratio among contemporary open-source LLMs. The
"-it" suffix denotes an instruction-tuned variant, making it well-suited for tasks that
require understanding and responding to specific directives, such as those in ASAG.
For the reasoning-guided approach, DeepSeek-R1-0528 was employed as the teacher
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model. This model was chosen for its state-ofthe-art open-source LLM at the time
of experimentation, making it suitable for generating the high-quality analytical ra-
tionales (alasan_penilaian) used as training targets.

Both LLM experiments utilized Parameter-Efficient Fine-Tuning (PEFT) with
Quantized Low-Rank Adaptation (LoRA) to make the fine-tuning process compu-
tationally tractable and efficient. The key hyperparameter settings, common to both
LLM fine-tuning experiments, were:

• LoRA rank: 64
• LoRA alpha: 64 (a scaling factor for LoRA)
• Learning rate: 0.0002
• Maximum sequence length: 1024 tokens
• Quantization: 4-bit quantization was applied to further reduce memory require-

ments.
• Training epochs: 100
• Batch size: 4
• Gradient accumulation steps: 8 (resulting in an effective batch size of 32)

The prompt structures for both fine-tuning approaches, detailed in Tables 2 and
3, were deliberately engineered to ensure clarity, controllability, and effective guid-
ance for the model. The design incorporates several key principles. First, the prompt
initiates with a role-playing instruction ("Anda asisten penilai ahli"), a technique used
to prime the model into a specific context, leading to more focused and relevant out-
puts. Second, it explicitly lists the evaluation criteria (e.g., conformity, completeness,
clarity) to direct the model’s attention to the specific dimensions of a high-quality
answer. Third, the use of XML-like tags (e.g.,<skor>, </skor> , <analisis _ penilaian>
) is critical for enforcing a structured output. This not only makes the final score
and rationale programmatically easy to parse during inference but is also vital dur-
ing training for masking the loss calculation to only the target text. This structured
approach minimizes ambiguity and ensures the model’s responses are consistent and
directly usable.

3.3.1 Standard Fine-Tuning: Gemma-3-1b-ASAG-ID (G)
This model serves as a control to assess the performance of the Gemma-3-1b-it model
when fine-tuned directly for the scoring task without the reasoning-guidance com-
ponent. Training samples were formatted using an instructional prompt designed
to elicit only the numerical score, as shown in Table 2. The loss calculation was
masked to ignore the instructional context, focusing solely on the predicted score.
The model’s target output (the assistant’s message) was structured to contain only
the human-assigned score.

3.3.2 Reasoning-GuidedFine-Tuning (ProposedMethod): Gemma-3-1b-ASAG-ID-Reasoning
(G-R)
This model represents the proposed methodology, where the LLM is trained to gen-
erate an analytical rationale before providing the score.
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To formalize this process, let us define the inputs as the professor’s answer, Ap, and
the student’s answer, As . A standard fine-tuning approach, as described in Section
3.3.1, aims to learn a direct mapping function, f , such that f (Ap, As) → Spredicted ,
where Spredicted is the predicted score.

In contrast, our proposed reasoning-guided method introduces an intermedi-
ate analytical step. The process begins with knowledge distillation, where a pow-
erful teacher model, Mteacher , generates a rationale, Rteacher , based on the full input
triplet from the training data, including the human-assigned score, Shuman, such that
Mteacher , (Ap,As,Shuman) → Rteacher .

This generated rationale, Rteacher , then serves as a supervised learning target along-
side the human score. The student model is therefore trained to learn a more complex
function,g, that produces a tuple containing both a predicted rationale, Rpredicted , and
a predicted score, Spredicted , such that g(Ap, As) → (Rpredicted , Spredicted).

By requiring the model to learn this joint distribution, the rationale generation
task Rpredicted acts as a structural regularizer on the score prediction task (Spredicted),
compelling the model to learn the underlying grading logic rather than simply mem-
orizing input-score pairs.

The DeepSeek-R1-0528 teacher model was first used to generate an analytical
reason (alasan_penilaian) explaining the human-assigned score for each sample in the
training dataset. This alasan_penilaian was then incorporated into the training target
for the G-R model. The quality of this distilled reasoning is pivotal, as the success
of the reasoning-as-regularization approach is fundamentally dependent on the stu-
dent model being trained on high-fidelity analytical targets. To formally validate
the output of the teacher model, a rigorous verification protocol was therefore estab-
lished and applied to the entire set of 176 generated rationales (alasan_penilaian). Each
rationale was systematically evaluated against a multi-dimensional quality rubric to
ensure it met the highest standards. The criteria included: 1) Logical Congruence,
confirming that the justification’s analytical depth and sentiment were proportionally
aligned with the human-assigned score; 2) Content Specificity, verifying the reason-
ing was explicitly grounded in the unique substance of the student’s answer relative
to the reference answer, not on generic templates; and 3) Factual Integrity, ensuring
all statements within the rationale were accurate to the subject matter. This compre-
hensive manual evaluation confirmed that the teacher model consistently produced
coherent, generalizable reasoning that reflected the underlying grading logic for ev-
ery sample in the training set, affirming that the distilled rationales provided a robust
and reliable signal for the regularization task.

The model was trained using an instructional prompt that explicitly asked for
both an analysis and a score, as shown in Table 3. The model’s target output (the
assistant’s message) was structured to include both the distilled analytical reason and
the human-assigned score.

3.4 Evaluation Protocol
Model performance was assessed using a suite of five standard evaluation metrics:

• Quadratic Weighted Kappa (QWK): Measures inter-rater agreement for or-
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Table 2. Template Structure of the Standard Fine-Tuning

Prompt Structure Target
Structure

Anda asisten penilai ahli. <skor>
Tugas: evaluasi "Jawaban Mahasiswa" vs "Kunci Jawaban Dosen" dengan pertimbangan
kesesuaian dengan kunci jawaban, kelengkapan argumen, panjang jawaban, kejelasan bahasa,
dan akurasi informasi.

{human_score}

Langsung berikan skor akhir dari 0-100 di antara <skor>dan</skor>. Jangan berikan analisis </skor>
atau teks tambahan apapun

Kunci Jawaban Dosen:
<kunci _ jawaban>

{jawaban_dosen}
</kunci_jawaban>

Jawaban Mahasiswa:
<jawaban_mahasiswa>
{jawaban_mahasiswa}

Analisis dan Penilaian:

dinal scales. It assigns greater penalties to disagreements that are further apart,
making it particularly suitable for evaluating grading tasks where the magnitude
of score difference matters.
• Root Mean Squared Error (RMSE): Calculates the square root of the average

of the squared differences between predicted and actual scores. RMSE is sensitive
to large errors.
• Mean Absolute Error (MAE): Computes the average of the absolute differences

between predicted and actual scores. MAE is less sensitive to outliers than RMSE.
• Pearson’s Correlation Coefficient (r): Measures the linear correlation between

predicted and actual scores.
• Spearman’s Rank Correlation Coefficient (): Measures the monotonic rela-

tionship between predicted and actual scores by comparing their ranks. It is less
sensitive to the specific distribution of scores than Pearson’s correlation and is
valuable for assessing if models rank answers in a similar order to human graders.

The use of this comprehensive set of metrics allows for a multifaceted understand-
ing of model performance. While RMSE and MAE quantify prediction error, QWK
and Spearman’s correlation provide insights into the agreement with human judg-
ment on an ordinal scale and rank-order consistency, respectively. These aspects are
often more reflective of true grading quality than raw error metrics alone, as a model
might achieve low MAE but still exhibit poor QWK if its errors, though small on
average, consistently cross important grade boundaries or fail to preserve the relative
ranking of answers.
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Table 3. Template Structure of the Reasoning-Guided Fine-Tuning

Prompt Structure Target Structure

Anda asisten penilai ahli. <analisis_penilaian>
Tugas: evaluasi "Jawaban Mahasiswa" vs "Kunci Jawaban Dosen" dengan pertimbangan {alasan_penilaian}
kesesuaian dengan kunci jawaban, kelengkapan argumen, panjang jawaban, kejelasan <analisis_penilaian>
bahasa, dan akurasi informasi. <skor>
Beri analisis singkat kelebihan/kekurangan di antara <analisis_penilaian>dan {human_score}
</analisis_penilaian>, lalu akhiri dengan skor 0-100 di antara <skor>dan </skor>. </skor>

Kunci Jawaban Dosen:
<kunci_jawaban>
{jawaban_dosen}
</kunci_jawaban>

Jawaban Mahasiswa:
<jawaban_mahasiswa>
{jawaban_mahasiswa}
</jawaban_mahasiswa>

Analisis dan Penilaian:

3.5 Implementation Details
All experiments were conducted on a workstation equipped with an NVIDIA GeForce
RTX 4090 GPU, an AMD Ryzen 7 5700X CPU, and 32 GB of RAM. The operating
system was Arch Linux (x86_64). The primary software libraries and frameworks uti-
lized included Unsloth (for efficient QLoRA fine-tuning of LLMs), Sentence Trans-
formers (for generating sentence embeddings), TRL (Transformers Reinforcement
Learning library, used for its supervised fine-tuning utilities), and scikit-learn (for im-
plementing baseline machine learning models and evaluation metrics). Documenting
these details is crucial for ensuring the reproducibility of the experiments and provid-
ing context for the reported performance benchmarks, such as training and inference
times.

4. Results and Analysis
This section presents the empirical findings of the study, beginning with an overall
comparison of model performance and computational costs, followed by a study fo-
cusing on the regularizing effect of reasoning-guided fine-tuning, and concluding
with a qualitative analysis of model behaviors.

4.1 Overall Performance and Computational Cost
Table 4 presents the comprehensive performance metrics and computational costs for
all 11 models evaluated on the Indonesian ASAG test set. Following hyper parameter
tuning, the best performing configurations for the classical models were used to gen-
erate these results. The final parameters were: Ridge (alpha: 0.1), Lasso (alpha: 0.01),
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Elastic Net (alpha: 0.1, l1_ratio: 0.1), SVR (C: 50, kernel: ’linear’), Gradient Boosting
(learning_rate: 0.1, max_depth: 3, n_estimators: 100), Random Forest (max_depth:
20, min_samples_split: 5, n_estimators: 100), and K-Neighbors (n_neighbors: 5).
This table provides the primary quantitative basis for comparing the efficacy of these
traditional machine learning approaches against our LLM fine-tuning strategies.

Table 4. Overall Model Performance and Computational Costs on the Test Set (n=44)

Model QWK RMSE MAE Pearsons Spearmans Training
Time (s)

Inference
Time (s)

RAM
Usage
(KB)

VRAM
Usage
(MB)

LinearR 0.5322 16.9727 13.8882 0.5975 0.5425 0.0218 0.0002 9.80 0.00
RR 0.6547 13.7230 11.2274 0.7652 0.6847 0.0051 0.0002 8.45 0.00

LassoR 0.6308 15.3129 12.4269 0.6753 0.6557 0.0339 0.0002 8.53 0.00
ENR 0.5216 17.1383 13.8482 0.5697 0.6081 0.0063 0.0001 8.53 0.00
SVR 0.6952 13.5348 10.8923 0.7822 0.7508 0.2184 0.0011 1413.79 0.00
GBR 0.6372 14.9279 11.5406 0.6987 0.6795 4.3462 0.0004 131.58 0.00
RFR 0.6757 14.8146 11.7906 0.7175 0.7233 5.2229 0.0128 417.24 0.00
KNR 0.6621 15.6578 12.4545 0.6629 0.6251 0.0015 0.0319 1412.71 0.00
NN 0.6024 15.0950 12.3353 0.7034 0.6342 0.3846 0.0003 1924.77 0.00
G 0.7279 17.0561 10.9091 0.7040 0.6488 1426.0 1.5480 2857984.00 2989.00

G-R 0.7791 13.1426 9.0909 0.7802 0.8276 1510.0 54.6260 2999296.00 10464.00

Analyzing the performance metrics, the G-R model clearly emerges as the state-
of-the-art performer on this dataset. It achieved the highest Quadratic Weighted
Kappa (QWK) of 0.7791 and the highest Spearman’s rank correlation of 0.8276.
These metrics, which emphasize agreement on an ordinal scale and rank-order con-
sistency respectively, are particularly crucial for ASAG tasks. This model outper-
formed the next-best traditional machine learning model, SVR (QWK 0.6952, Spear-
man 0.7508), surpassed the standard fine-tuned LLM, G (QWK 0.7279, Spearman
0.6488). This result represents a substantial methodological leap over the foundational
LSA-based approaches previously applied to this task [31]. By moving from statistical
similarity to generative reasoning, our approach is designed to capture more complex
nuances of language, a capability reflected in the high QWK and Spearman’s scores.
These metrics, which are standard for modern grading tasks, provide a more robust
assessment of performance than the custom accuracy metrics used in earlier work.
The G-R model also achieved the lowest MAE (9.0909) and RMSE (13.1426) among
all models, indicating superior accuracy in predicting the absolute scores.

Notably, this superior performance comes at a steep price in terms of compu-
tational resources. The G-R model’s inference time of 54.6260 seconds for the 44-
sample test set is over 35 times longer than that of its non-reasoning counterpart,
G (1.5480 seconds). Furthermore, its inference time is several orders of magni-
tude greater than that of the highly efficient SVR model (0.0011 seconds). The
VRAM usage during inference for the reasoning model (10464.00 MB) is also sub-
stantially higher than for the non-reasoning LLM (2989.00 MB) and vastly greater
than the negligible VRAM usage of traditional models. This highlights a critical
performance-versus-efficiency trade-off that practitioners must consider. While the
reasoningguided approach yields the highest accuracy, its deployment in real-time or
resourceconstrained scenarios would require careful consideration of these compu-
tational overheads. The results starkly illustrate that achieving high accuracy in this
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challenging low-resource Indonesian ASAG task with LLMs requires not only a so-
phisticated method like reasoning-guidance but also incurs substantial computational
demands.

4.2 The Regularizing Effect of Reasoning-Guided Fine-Tuning
To investigate the impact of the reasoning-guided fine-tuning approach on model
generalization, a study was conducted by comparing the training and testing perfor-
mance of GR (proposed method) against G (standard fine-tuning) over 100 epochs.
Figure 2, Figure 3, Figure 4, Figure 5, and Figure 6 visualize the learning curves
for RMSE, MAE, Pearson’s correlation, Spearman’s correlation, and QWK for both
models on both training and test sets.

Figure 2. RMSE Evolution of Gemma-3 Fine-Tuning

The behavior of the G model, as depicted by its learning curves, is a textbook
example of catastrophic overfitting on a small dataset. The training loss, represented
by RMSE and MAE, plummets to near-zero values by epoch 30 (Figure 2, Figure 3),
while the training QWK and correlation scores simultaneously saturate at a perfect
1.0 (Figure 4, Figure 5, Figure 6). This indicates that the model has not learned a
generalizable grading function but has instead perfectly memorized the 176 training
examples. The test performance curves confirm this failure. After a brief period of
improvement, the test performance peaks prematurely around epoch 24 and subse-
quently stagnates or even degrades. This creates a massive and growing divergence
between the perfect training scores and the poor test scores, a classic sign that the
model is not viable for real-world use on unseen data.

In stark contrast, the G-R model’s learning curves demonstrate the powerful reg-
ularizing effect of the reasoning-guided approach. Its training error decreases more
gradually and stabilizes at a non-zero plateau (e.g., RMSE around 10-12), which is
indicative of a model that is learning patterns rather than memorizing noise. Most
importantly, its test performance curves, while exhibiting noticeable volatility, track
the trend of the training curves far more closely across all metrics. This jaggedness
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Figure 3. MAE Evolution of Gemma-3 Fine-Tuning

Figure 4. Pearson Evolution of Gemma-3 Fine-Tuning

in the test curves is expected given the small test set size (n=44), where the misclas-
sification of even a few samples can cause significant epoch-toepoch fluctuations in
aggregate scores. However, unlike the G model, the G-R model’s test performance
sustains a stable, upward trajectory long into the training process, eventually plateau-
ing at a much higher level of performance without the catastrophic divergence seen
in the standard fine-tuning approach. This results in a significantly smaller general-
ization gap (Table 5) and demonstrates that the model has learned a more robust and
useful grading logic. The requirement to generate a coherent rationale has success-
fully constrained the model, preventing it from collapsing into a simple memorization
strategy and forcing it to develop a more nuanced understanding of the grading task.

To provide a precise numerical summary of the trends observed in the learning
curves, Table 5 presents the key performance characteristics of each model. The
table highlights the peak performance achieved on the unseen test set and contrasts it
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Figure 5. Spearman Evolution of Gemma-3 Fine-Tuning

Figure 6. QWK Evolution of Gemma-3 Fine-Tuning

with the training set performance at that same epoch, thereby quantifying the critical
generalization gap.

The data in Table 5 crystallizes the findings from the learning curves, offering
definitive proof of the non-reasoning model’s overfitting. It reaches its peak test per-
formance remarkably early, around epoch 24 for most metrics. At this early stage, a
massive generalization gap is already evident. For instance, while its peak test QWK
is 0.7222, its training QWK has already soared to 0.9643, creating a substantial gap of
0.2420. This pattern, where the model performs far better on data it has memorized
than on new data, confirms that it has prioritized rote learning over developing a true,
generalizable grading logic. In stark contrast, the reasoning-guided model demon-
strates the hallmarks of effective generalization. It achieves a significantly higher peak
test score (e.g., a QWK of 0.7791 and a Spearman correlation of 0.8276) much later in
the training, around epoch 86. More importantly, its generalization gap is an order
of magnitude smaller across all key metrics.
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Table 5. Summary of Model Performance and Generalization Gap at Peak Test Performance

Metric Statistic Non Reasoning Reasoning
QWK Test Score (Peak) 0.7222 0.7791

Train Score (at Peak) 0.9643 0.8448
Generalization Gap 0.2420 0.0657

Peak Epoch 24 86
Spearman Test Score (Peak) 0.6488 0.8276

Train Score (at Peak) 0.9740 0.8405
Generalization Gap 0.3252 0.0129

Peak Epoch 24 86
RMSE Test Score (Peak) 16.0963 13.1426

Train Score (at Peak) 3.8552 13.6614
Generalization Gap 12.2411 0.5188

Peak Epoch 18 86
MAE Test Score (Peak) 10.9091 9.0909

Train Score (at Peak) 0.6857 6.3371
Generalization Gap 10.2234 2.7538

Peak Epoch 24 86

The QWK gap is only 0.0657 (compared to 0.2420 for the non-reasoning model),
and the Spearman gap is a mere 0.0129. This indicates that the training and test
performance curves track each other much more closely, a classic sign of a well-
regularized model that learns the task’s underlying principles.

These results provide strong evidence that the reasoning-generation step acts as
a powerful structural regularizer. By forcing the model to generate a coherent jus-
tification for its score, a task that is inherently more complex than merely predicting
a numerical value, we constrain the optimization process. This additional constraint
prevents the model from collapsing into a simple memorization of (answer, score)
pairs from the limited training data. Instead, it compels the model to learn the un-
derlying grading logic embedded within the (distilled) reasoning traces. The re-
quirement to produce a structured textual explanation alongside the score effectively
increases the complexity of the learning task. Rather than mapping input text to a
single number, the model must now learn a more intricate mapping to both a tex-
tual rationale and a score, where the rationale must be consistent with the score and
reflect the teacher model’s grading logic. This increased task demand makes it more
difficult for the model to find trivial solutions that only memorize the scoring sub-
task, thereby promoting the learning of more generalizable features pertinent to the
actual grading criteria.

4.3 In-Depth Diagnostic Analysis of Model Behavior
To move beyond aggregate metrics and gain a deeper understanding of model qual-
ity, a series of diagnostic tests were performed. This section presents a quantitative
analysis of model prediction errors and an investigation into potential model bias
stemming from superficial heuristics like answer length.

4.3.1 Quantitative Error Analysis
The residual plots (predicted score vs. residuals) serve as a primary tool for assessing
the validity of a regression model’s assumptions. The plot for the SVR model (Figure
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7) reveals significant heteroscedasticity. The variance of the residuals is not con-
stant, forming a funnel shape where predictive error is substantially larger for lower
predicted scores than for higher ones. This indicates that the model’s reliability is
inconsistent across its predictive range. The plot for the G model (Figure 8) exhibits
an even more severe form of heteroscedasticity. Critically, it also displays a system-
atic overestimation bias. For predicted scores above 80, a preponderance of residuals
are negative, indicating that the model’s predictions are consistently higher than the
actual scores in this range. In stark contrast, the plot for the G-R model (Figure 9)
demonstrates a superior error profile. The residuals are largely homoscedastic, scat-
tered randomly around the zero line with relatively constant variance. Furthermore,
there is no evidence of the systematic bias observed in Figure 8. While the overall
error pattern is robust, the presence of several large outliers indicates that the model
is still capable of making significant individual errors.

Figure 7. Residual Plot for SVR

Figure 8. Residual Plot for G
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Figure 9. Residual Plot for G-R

The binned confusion matrices, which categorize continuous scores into discrete
bins based on the quantiles from Table 1, provide a granular view of these error pat-
terns. The matrix for the SVR model (Figure 10) corroborates its heteroscedastic
nature, revealing a "central dumping" phenomenon where the model disproportion-
ately classifies most cases into Bin 1 (70- 80). This strategy results in a near-total
failure to correctly identify scores in the higher bins (Bin 2 and Bin 3), confirming
that its smaller error variance at high predictions is an artifact of systematic underes-
timation. The matrix for the G model (Figure 11) provides definitive evidence of the
flaws seen in its residual plot. The error pattern is chaotic, with misclassifications oc-
curring between non-adjacent bins. Most importantly, the final column (Predicted
Score Bin 3) is composed primarily of instances from lower actual score bins, quan-
titatively confirming the model’s strong systematic overestimation bias. Finally, the
matrix for the G-R model (Figure 12) aligns with its well-behaved residual plot. It
shows the most balanced performance, with more logical, adjacent-bin errors and a
significantly improved ability to correctly classify scores in the higher bins. The re-
maining cross-category misclassifications correspond to the outliers noted in Figure
9.

The combined visual evidence indicates a clear hierarchy of model quality. The
G-R model, which is the proposed model, is demonstrably superior, exhibiting un-
biased and largely homoscedastic errors. The SVR model is fundamentally flawed
by heteroscedasticity and a simplistic predictive strategy. The G model is the least
reliable, suffering from both high error variance and a systematic directional bias.

4.3.2 Analysis of Answer Length Bias
This section investigates the extent to which model predictions are influenced by a
common superficial heuristic: the length of the student’s answer. The presence of
such a bias undermines a model’s claim to be assessing content quality. The analysis
is based on Pearson and Spearman correlation results presented in Table 6.
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Figure 10. Binned Confusion Matrix for SVR

Figure 11. Binned Confusion Matrix for G
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Figure 12. Binned Confusion Matrix for G-R

Table 6. Correlation Analysis of Student’s Answer Length vs Predicted Score

Model Pearson
Correlation

Pearson
p-value

Spearman
Correlation

Spearman
p-value

LinearR 0.4008 0.0070 0.3674 0.0142
RR 0.6745 < 0.0001 0.6755 < 0.0001

LassoR 0.6548 < 0.0001 0.6664 < 0.0001
ENR 0.9982 < 0.0001 0.9956 < 0.0001
SVR 0.7573 < 0.0001 0.8289 < 0.0001
GBR 0.6344 < 0.0001 0.6718 < 0.0001
RFR 0.6539 < 0.0001 0.7086 < 0.0001
KNR 0.7341 < 0.0001 0.7889 < 0.0001
NN 0.9030 < 0.0001 0.9293 < 0.0001
G-R -0.0024 0.9875 0.0413 0.7901

G -0.2634 0.0841 -0.3077 0.0422

The correlation data reveals a critical vulnerability in most of the tested models. A
large majority exhibit strong to moderate, statistically significant positive correlations
between answer length and predicted score. For the SVR model, the Spearman cor-
relation was exceptionally high (ρ = 0.8289, p < 0.0001). This indicates these models
have learned the fallacious heuristic that longer answers warrant higher scores. The G
model displays a statistically significant negative monotonic correlation (Spearman’s
ρ = -0.3077, p = 0.0422), indicating it also possesses a length bias, albeit a different
one, where it tends to penalize longer answers.
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The proposed model (G-R) is the sole exception. It returned correlation coef-
ficients near zero for both Pearson and Spearman metrics, with p-values (p > 0.79)
indicating a complete lack of statistical significance. This quantitative data provides
powerful, independent validation of the findings from the diagnostic plots. The G-R
model, identified as the most robust from a qualitative perspective, is also the only
model demonstrated to be free of length bias. This analysis demonstrates that even
models with acceptable aggregate performance metrics can be fundamentally unre-
liable if their predictive power stems from superficial heuristics rather than a valid
assessment of content. The proposed model is the only one evaluated that meets the
criteria for both robust error characteristics and freedom from the tested heuristic
bias.

4.4 Qualitative Analysis: Calibration and Superficiality
To gain deeper insights into the behavior of the models beyond aggregate metrics,
a qualitative analysis was performed on selected examples from the test set. Table 7
presents two illustrative cases, highlighting instances of calibrated nuance and sus-
ceptibility to superficiality.

Table 7. Qualitative Analysis of Model Predictions on Selected Test Samples

Metric / Data Example 1: Calibrated Nuance
(ID 20)

Example 2: Susceptibility to
Superficiality (ID 47)

Human Score (Ground Truth) 80.00 20.00
G-R Prediction 80.00 100.00

G Prediction 100.00 90.00
SVR Prediction 68.62 47.76

Professor’s Answer

komputer model von neumann
model arsitektur dideskripsikan john
von neumann tahun 1945 first draft

of a report on the edvac model
arsitektur dijadikan basis komputer
unit pemrosesan berisi alu register

prosesor unit kontrol berisi
instruction register program counter

memori untuk menyimpan data
instruksi penyimpanan eksternal

mekanisme input output

client server jaringan komputer
model komunikasi terjadi dua belah
pihak penyedia layanan data disebut

server pengguna peminta layanan
data disebut client umumnya kedua

belah pihak berkomunikasi
hardware berbeda terjadi satu mesin

sistem

Student’s Answer komputer memiliki processing unit
memory input ouput

komputer menggunakan layanan
tersedia jaringan

In Example 1, the student’s answer ("komputer memiliki processing unit memory
input ouput" – a computer has a processing unit, memory, input, output) is short but
accurately captures core components of the Von Neumann architecture described
in the professor’s detailed answer. The human grader assigned a score of 80. The
G-R model predicted a score of 80, perfectly matching the human judgment. This
suggests that the reasoning-guided model was able to appreciate the conciseness and
correctness of the student’s response without being penalized for its brevity relative to
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the comprehensive professor’s answer. In contrast, the G model over-predicted with
a score of 100, potentially due to matching key terms without a deeper assessment
of completeness. The SVR model under-predicted with a score of 68.62. This case
highlights the proposed model’s capacity for calibrated nuance, aligning well with
human assessment on answers that are correct but not exhaustive.

Example 2 reveals a key vulnerability, particularly in the LLM-based approaches.
The student’s answer ("komputer menggunakan layanan tersedia jaringan" – com-
puters use available network services) is on-topic in relation to the professor’s answer
about client-server architecture but is extremely shallow and lacks substantive detail.
The human grader assigned a low score of 20, reflecting this lack of depth. However,
both LLM variants assigned catastrophically high scores: the G-R model predicted
100, and the G model predicted 90. These inflated scores were likely triggered by
the presence of relevant keywords such as "jaringan" (network) and "layanan" (ser-
vices), without the models adequately discerning the superficial nature of the state-
ment. The SVR model, while still over-predicting at 47.76, was considerably closer
to the human score than the LLMs. This example indicates that the LLMs, even in
their reasoning-guided fine-tuned state, can struggle to differentiate between deep
understanding and superficial keyword matching.

This qualitative analysis underscores that while the reasoning-guided approach
demonstrably improves generalization and calibration in many instances (as seen in
ID 20 and the overall quantitative metrics), it does not entirely resolve the challenge
of assessing the true depth of student understanding. The failure on ID 47 suggests
that the model, despite being trained to generate a reason, might still produce rea-
sons based on relatively superficial cues if those cues were correlated with high scores
in the training data. The distilled reasoning from the teacher model, or the limited
examples in the training set, may not have provided sufficient signal to strongly penal-
ize shallow answers that happen to use correct terminology. This points to a critical
area for future improvement: enhancing the model’s ability to look beyond surface
features to evaluate the substantive content of student responses.

4.5 Implications of Findings
For NLP researchers, the demonstration that "reasoning as regularization" can sig-
nificantly improve LLM performance and robustness in low-resource domains offers
a tangible methodological contribution. The approach of using distilled reasoning
from a more capable teacher model as a co-training target for a smaller student model
provides a template that could be adapted for other specialized NLP tasks where data
scarcity is a bottleneck and nuanced evaluation is required. This study provides em-
pirical evidence for the effectiveness of this technique, particularly in transforming a
model prone to memorization into one that exhibits genuine generalization on the
target task. The success of using distilled reasoning suggests broader applicability be-
yond ASAG. This technique could potentially be adapted for other NLP tasks where
LLMs suffer from overfitting in low-data scenarios, or where smaller, more efficient
models are needed that can still capture some of the nuanced capabilities of larger
models. The underlying principle, distilling complex intermediate outputs (like rea-
soning, planning steps, or structured explanations) from a large teacher model to train
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a smaller student model, could serve as a general strategy for creating more robust
and efficient specialized LLMs across various domains.

For educators and EdTech developers, this research illuminates a promising, albeit
computationally intensive, pathway towards creating more sophisticated, reliable,
and potentially feedback-rich automated grading tools, even for under-resourced
languages like Indonesian. The high accuracy achieved by the G-R model (QWK
0.7791) suggests its potential for practical application in educational settings, pro-
vided the computational costs can be managed. The qualitative analysis, particularly
the identification of "susceptibility to superficiality," also offers valuable insights into
where human oversight and intervention remain critical, guiding the development
of hybrid human-AI grading systems.

4.6 Limitations and Future Work
Despite the promising results, this study has several limitations that warrant discussion
and offer directions for future research.

First, the "Susceptibility to Superficiality," as revealed in the qualitative analy-
sis (Example ID 47), is a significant concern. Both LLM variants, including the
reasoning-guided model, assigned inappropriately high scores to a shallow answer
that contained relevant keywords. This indicates that the models, in their current
state, may not adequately distinguish between superficial keyword matching and
genuine, deep understanding. Future work should focus on mitigating this vul-
nerability. One approach could be to enrich the fine-tuning dataset with a more
diverse range of answer qualities, specifically including examples of deliberately shal-
low, cleverly incorrect, or off-topic but keyword-rich answers. Training the model
on such adversarial or contrastive examples could teach it a deeper level of discern-
ment.

Second, while this study focused on the instrumental value of reasoning as a pow-
erful regularizer, it did not include a formal quantitative assessment of the intrinsic
quality of the rationales generated by the student model during inference. A crucial
direction for future research is to conduct such a quantitative human evaluation. This
would involve creating a detailed scoring rubric with well-defined criteria, such as
Coherence (the logical structure and clarity of the rationale), Correctness (the factual
accuracy of its claims), and Sufficiency (whether the provided justification is detailed
enough to support the predicted score). To ensure objective and reliable results, this
analysis should involve multiple trained raters with domain expertise, and inter-rater
reliability scores (e.g., Fleiss’ Kappa or Krippendorff’s Alpha) should be calculated.
This step would provide a direct measure of the model’s ability to produce trust-
worthy explanations and would enable a more granular analysis of its failure modes,
which is essential for building confidence in its practical application.

Third, the small dataset size (n=220 total, 176 for training), while intentionally
chosen to reflect a low-resource scenario, inherently limits the statistical power and
generalizability of the findings. Although the reasoning-guided approach demon-
strated clear superiority within this context, further validation on larger and more
diverse Indonesian ASAG datasets is a necessary next step. Additionally, exploring
the applicability of this methodology to other low-resource languages and different
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subject domains would be valuable to confirm the broader relevance of the "reasoning
as regularization" principle.

Fourth, the training and test performance curves (Figure 6), even for the reasoning-
guided model, exhibited some volatility. While the reasoning component clearly
acted as a regularizer, there might be scope for further stabilization and improve-
ment in generalization. Future research could explore the integration of alternative
or complementary regularization techniques, such as different optimizers, adjusted
dropout rates, or weight decay , in conjunction with the reasoning-guided fine-
tuning approach.

Fifth, the effectiveness of the reasoning-guided method is fundamentally bottle-
necked by the quality of the distilled reasoning from the teacher model (DeepSeek
R1-0528). To mitigate the risk of flawed or biased rationales, every entry in the
dataset was manually verified for quality. Despite this curation, the student model’s
performance ceiling is intrinsically linked to the caliber of these teacher-generated
rationales. Any remaining subtle flaws, biases, or superficial cues in the verified rea-
soning could still be transferred to the student model, limiting the efficacy of the
regularization. Future work could investigate the impact of different teacher mod-
els or explore methods for further refining the distilled reasoning. More advanced
techniques could even empower the student model to critique or improve upon the
teacher’s rationales. This highlights that the model’s ability to differentiate deep un-
derstanding from superficial responses is contingent on the signals in its training data,
including the distilled reasoning. To achieve finer levels of discernment, future en-
hancements must therefore focus not only on the reasoning-guided methodology
itself but also on elevating the quality and diversity of these core training signals.

Finally, the computational cost of the G-R model, particularly its significantly
longer inference time, poses a practical limitation for certain applications. While the
improved accuracy may justify the cost in some scenarios, future work could explore
methods to optimize the inference efficiency of models that generate extended rea-
soning chains. This might involve techniques like model distillation (i.e., training an
even smaller model to mimic the reasoning-guided model’s outputs), quantization
beyond 4-bits if feasible, or pruning.

Addressing these limitations will be crucial for advancing the development of
robust, reliable, and practical ASAG systems, especially in challenging low-resource
environments.

5. Conclusion
The effective application of data-hungry Large Language Models to specialized, lowre-
source Automated Short Answer Grading (ASAG) tasks, such as for the Indonesian
language, presents a formidable challenge. Standard fine-tuning approaches often
lead to debilitating overfitting, severely curtailing the practical utility of these pow-
erful models when training data is scarce. This research confronted this challenge
directly, investigating a novel fine-tuning strategy to mitigate overfitting and en-
hance model robustness. We demonstrated that fine-tuning an LLM (Gemma-3-1b-
it) with distilled analytical reasoning, sourced from a more capable teacher model, as
a co-training target serves as an effective structural regularizer. This approach trans-
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formed a model that would otherwise merely memorize the limited training data into
one that genuinely generalizes from it. The resulting reasoning-guided model (G-R)
achieved state-of-the-art performance on an expanded Indonesian ASAG dataset, sig-
nificantly outperforming nine traditional machine learning baselines and a standard
fine-tuned LLM counterpart.

The primary contributions of this work are threefold. First, we introduce and val-
idate "reasoning as regularization" as a novel, effective method to combat the catas-
trophic overfitting that typically occurs when fine-tuning LLMs on small, specialized
datasets. Second, this approach achieves state-of-the-art performance on an Indone-
sian ASAG task (QWK 0.7791, Spearman’s 0.8276), establishing a new and more
robust benchmark for this low-resource domain. Furthermore, robust diagnostic
analysis demonstrates the proposed model’s superior, homoscedastic error profile and,
critically, its freedom from the answer-length bias that systematically compromised
every other traditional and LLM-based model tested. Third, we provide a detailed
quantitative analysis of the performance-versus-efficiency trade-offs inherent to this
approach, revealing the substantial computational costs (over 35× inference time) re-
quired to achieve higher accuracy through reasoning generation.

Collectively, these findings provide a methodological template for applying large
language models more successfully and responsibly in data-scarce environments. This
work paves the way for developing more nuanced, reliable, and fair automated as-
sessment tools in diverse linguistic and educational contexts.

6. Conclusion
The effective application of data-hungry Large Language Models to specialized, lowre-
source Automated Short Answer Grading (ASAG) tasks, such as for the Indonesian
language, presents a formidable challenge. Standard fine-tuning approaches often
lead to debilitating overfitting, severely curtailing the practical utility of these pow-
erful models when training data is scarce. This research confronted this challenge
directly, investigating a novel fine-tuning strategy to mitigate overfitting and en-
hance model robustness. We demonstrated that fine-tuning an LLM (Gemma-3-1b-
it) with distilled analytical reasoning, sourced from a more capable teacher model, as
a co-training target serves as an effective structural regularizer. This approach trans-
formed a model that would otherwise merely memorize the limited training data into
one that genuinely generalizes from it. The resulting reasoning-guided model (G-R)
achieved state-of-the-art performance on an expanded Indonesian ASAG dataset, sig-
nificantly outperforming nine traditional machine learning baselines and a standard
fine-tuned LLM counterpart.

The primary contributions of this work are threefold. First, we introduce and val-
idate "reasoning as regularization" as a novel, effective method to combat the catas-
trophic overfitting that typically occurs when fine-tuning LLMs on small, specialized
datasets. Second, this approach achieves state-of-the-art performance on an Indone-
sian ASAG task (QWK 0.7791, Spearman’s 0.8276), establishing a new and more
robust benchmark for this low-resource domain. Furthermore, robust diagnostic
analysis demonstrates the proposed model’s superior, homoscedastic error profile and,
critically, its freedom from the answer-length bias that systematically compromised
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every other traditional and LLM-based model tested. Third, we provide a detailed
quantitative analysis of the performance-versus-efficiency trade-offs inherent to this
approach, revealing the substantial computational costs (over 35× inference time) re-
quired to achieve higher accuracy through reasoning generation.

Collectively, these findings provide a methodological template for applying large
language models more successfully and responsibly in data-scarce environments. This
work paves the way for developing more nuanced, reliable, and fair automated as-
sessment tools in diverse linguistic and educational contexts.

References
[1] S. Haller et al. “Survey on Automated Short Answer Grading with Deep Learning: from Word

Embeddings to Transformers”. In: (Mar. 2022). Accessed: Jun. 10, 2025. URL: https://arxiv.org/pdf/
2204.03503.

[2] R. Weegar and P. Idestam-Almquist. “Reducing Workload in Short Answer Grading Using Ma-
chine Learning”. In: International Journal of Artificial Intelligence in Education 34.2 (June 2024), pp. 247–
273. DOI: 10.1007/S40593-022-00322-1.

[3] L. Anglin et al. “Improving the Efficiency and Effectiveness of Grading Through the Use of Computer-
Assisted Grading Rubrics”. In: Decision Sciences Journal of Innovative Education 6.1 (Jan. 2008), pp. 51–
73. DOI: 10.1111/J.1540-4609.2007.00153.X.

[4] F. Chai et al. “Grading by AI makes me feel fairer? How different evaluators affect college students’
perception of fairness”. In: Frontiers in Psychology 15 (Feb. 2024), p. 1221177. DOI: 10.3389/FPSYG.
2024.1221177.

[5] Z. (Helen) Wang, J. Pei, and J. Li. 30 Million Canvas Grading Records Reveal Widespread Sequential
Bias and System-Induced Surname Initial Disparity. Accessed: Jun. 10, 2025. Oct. 2023. URL: https :
//papers.ssrn.com/abstract=4603146.

[6] J. M. Malouff, A. J. Emmerton, and N. S. Schutte. “The Risk of a Halo Bias as a Reason to Keep
Students Anonymous During Grading”. In: Teaching of Psychology 40.3 (2013), pp. 233–237. DOI:
10.1177/0098628313487425.

[7] J. Klein. “The failure of a decision support system: inconsistency in test grading by teachers”. In:
Teaching and Teacher Education 18.8 (Nov. 2002), pp. 1023–1033. DOI: 10.1016/S0742- 051X(02)
00057-4.

[8] Ó. Cuéllar, M. Contero, and M. Hincapié. “Personalized and Timely Feedback in Online Edu-
cation: Enhancing Learning with Deep Learning and Large Language Models”. In: Multimodal
Technologies and Interaction 9.5 (May 2025), p. 45. DOI: 10.3390/MTI9050045.

[9] E. Del Gobbo et al. “GradeAid: a framework for automatic short answers grading in educational
contexts-design, implementation and evaluation”. In: Knowledge and Information Systems 65 (2023),
pp. 4295–4334. DOI: 10.1007/s10115-023-01892-9.

[10] C. Zhao, M. Silva, and S. Poulsen. Language Models are Few-Shot Graders. Accessed: Jun. 10, 2025.
Feb. 2025. URL: https://arxiv.org/pdf/2502.13337.

[11] A. F. Aji et al. “One Country, 700+ Languages: NLP Challenges for Underrepresented Languages
and Dialects in Indonesia”. In: Proceedings of the Annual Meeting of the Association for Computational
Linguistics. Vol. 1. Mar. 2022, pp. 7226–7249. DOI: 10.18653/v1/2022.acl-long.500.

[12] S. Cahyawijaya et al. “NusaWrites: Constructing High-Quality Corpora for Underrepresented and
Extremely Low-Resource Languages”. In: Sept. 2023, pp. 921–945. DOI: 10.18653/v1/2023.ijcnlp-
main.60.

[13] L. Susanto et al. “Replicable Benchmarking of Neural Machine Translation (NMT) on Low-Resource
Local Languages in Indonesia”. In: Nov. 2023, pp. 100–115. DOI: 10.18653/v1/2023.sealp-1.8.

[14] H. Xu et al. Large Language Models for Education: A Survey. Accessed: Jun. 10, 2025. May 2024. URL:
https://arxiv.org/pdf/2405.13001.



650 Muhammad Naufal Faza et al.

[15] K. Tirumala et al. Memorization Without Overfitting: Analyzing the Training Dynamics of Large Lan-
guage Models. Accessed: Jun. 10, 2025. May 2022. URL: https://arxiv.org/pdf/2205.10770.

[16] D. Hernandez et al. Scaling Laws and Interpretability of Learning from Repeated Data. Accessed: Jun.
10, 2025. May 2022. URL: https://arxiv.org/pdf/2205.10487.

[17] S. A. Mahmood and M. A. Abdulsamad. “Automatic assessment of short answer questions: Review”.
In: Edelweiss Applied Science and Technology 8.6 (2024). Accessed: Jun. 10, 2025, pp. 9158–9176. URL:
https://ideas.repec.org/a/ajp/edwast/v8y2024i6p9158-9176id3956.html.

[18] N. LaVoie et al. “Using Latent Semantic Analysis to Score Short Answer Constructed Responses:
Automated Scoring of the Consequences Test”. In: Educational and Psychological Measurement 80.2
(Apr. 2019), p. 399. DOI: 10.1177/0013164419860575.

[19] N. Reimers and I. Gurevych. “Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks”.
In: EMNLP-IJCNLP 2019 - Conference on Empirical Methods in Natural Language Processing and
9th International Joint Conference on Natural Language Processing. Aug. 2019, pp. 3982–3992. DOI:
10.18653/v1/d19-1410.

[20] SentenceTransformers Documentation — Sentence Transformers documentation. Accessed: Jun. 10, 2025.
URL: https://sbert.net/.

[21] J. Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers for Language Under-
standing”. In: NAACL HLT 2019 - Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies. Vol. 1. Accessed: Jun. 10, 2025. Oct. 2018,
pp. 4171–4186. URL: https://arxiv.org/pdf/1810.04805.

[22] OpenAI et al. GPT-4 Technical Report. Accessed: Jun. 10, 2025. Mar. 2023. URL: https://arxiv.org/
pdf/2303.08774.

[23] G. Team et al. Gemma 3 Technical Report. Accessed: Jun. 10, 2025. Mar. 2025. URL: https://arxiv.
org/pdf/2503.19786.

[24] Z. Han et al. Parameter-Efficient Fine-Tuning for Large Models: A Comprehensive Survey. Accessed:
Jun. 10, 2025. Mar. 2024. URL: https://arxiv.org/pdf/2403.14608.

[25] E. Hu et al. “LoRA: Low-Rank Adaptation of Large Language Models”. In: ICLR 2022 - 10th
International Conference on Learning Representations. Accessed: Jun. 10, 2025. June 2021. URL: https:
//arxiv.org/pdf/2106.09685.

[26] J. Wei et al. “Chain-of-Thought Prompting Elicits Reasoning in Large Language Models”. In:
Advances in Neural Information Processing Systems. Vol. 35. Accessed: Jun. 10, 2025. Jan. 2022. URL:
https://arxiv.org/pdf/2201.11903.

[27] deepseek-ai/DeepSeek-R1-0528 · Hugging Face. Accessed: Jun. 10, 2025. URL: https://huggingface.
co/deepseek-ai/DeepSeek-R1-0528.

[28] F. Koto et al. IndoLEM and IndoBERT: A Benchmark Dataset and Pre-trained Language Model for
Indonesian NLP. Nov. 2020.

[29] W. Wongso et al. NusaBERT: Teaching IndoBERT to be Multilingual and Multicultural. Accessed:
Jun. 10, 2025. Mar. 2024. URL: https://arxiv.org/pdf/2403.01817.

[30] W. Puspitasari, D. Ramdani, and A. M. Maulana. “IndoT5 (Text-to-Text Transfer Transformer)
Algorithm for Paraphrasing Indonesian Language Islamic Sermon Manuscripts”. In: Khazanah Jour-
nal of Religion and Technology 2.2 (Jan. 2024), pp. 63–73. DOI: 10.15575/KJRT.V2I2.1093.

[31] A. A. Putri Ratna et al. “Automatic Essay Grading for Bahasa Indonesia with Support Vector Ma-
chine and Latent Semantic Analysis”. In: ICECOS 2019 - 3rd International Conference on Electrical
Engineering and Computer Science. Oct. 2019, pp. 363–367. DOI: 10 . 1109 / ICECOS47637 . 2019 .
8984528.

[32] M. C. Wijaya. “Automatic Short Answer Grading System in Indonesian Language Using BERT
Machine Learning”. In: Revue d’Intelligence Artificielle 35.6 (Dec. 2021), pp. 503–509. DOI: 10.18280/
RIA.350609.

[33] M. Kharis, K. Laksono, and Suhartono. “Utilization of NLP-Technology in Current Applications
for Education and Research by Indonesian Student, Teacher, and Lecturer”. In: Journal of Higher
Education Theory and Practice 22.14 (Nov. 2022), pp. 170–178. DOI: 10.33423/JHETP.V22I14.5544.


