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Abstract

The rapid advancement of technology in electrical systems has led to increased complexity
in power systems, making the operation and maintenance of power system networks more
challenging, especially when disturbances occur. To address this issue, it is essential to
maximize the utilization of available tools to effectively manage power system networks.
Currently, power system networks are equipped with protection relays and control
devices that provide various types of data about the system, such as the Disturbance
Fault Recorder (DFR), which monitors and records the system’s characteristics during
network disturbances. The DFR stores information about system parameters during a
fault; however, it is unable to identify the type or cause of the disturbance.Therefore, this
paper proposes a method based on the Convolutional Neural Network (CNN) model
to analyze DFR data and determine the type or cause of the disturbance, enabling more
appropriate and effective follow-up actions. Based on the research findings, the CNN
model, applied to six types of disturbance classification, achieved an accuracy of 93.87%.
These results demonstrate that CNN, particularly using the VGG19 architecture, performs
satisfactorily in analyzing graphical disturbance patterns.

Keywords: Convolutional Neural Network, Disturbance Recorder, Power Transmission, Fault Signature,
Digital Fault Recorder

1. Introduction

In recent years, power transmission systems have become increasingly complex due to
the integration of advanced technologies and the growing demand for reliable electric-
ity. In the event of a system disturbance, the rapid and accurate classification of faults
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is essential for effective post-disturbance analysis and timely restoration of the power
supply. Information regarding the type of fault plays a crucial role in determining
the fault location and guiding the implementation of appropriate corrective actions.
Accurate fault classification enhances the effectiveness of fault diagnosis systems by
enabling the selection of the most appropriate fault location methodology [1]. There
are various types of faults, including the High Impedance Fault (HIF). Prolonged
operation under High Impedance Fault conditions can lead to an increase in tem-
perature at the fault point, damage equipment insulation, trigger phase-to-phase or
phase-to-ground faults, cause fault propagation, harm the surrounding environment,
and even pose serious electrical hazards to personnel [2]. Therefore, comprehensive
equipment is required to ensure the reliability and eflicient operation of power sys-
tems, particularly within secondary systems such as protection and control devices.
With the advancement of technology, protective relays have undergone significant
development, one of the most critical features being the Disturbance Recorder. This
component plays a vital role in capturing system behavior during faults and supports
accurate decision-making in fault analysis and system recovery.

Conventional fault diagnosis relies on model-based techniques and requires domain
experts to monitor the power grid. However, recent advancements advocate adopting
Machine Learning (ML) paradigms to detect, classify, and localize faults, enabling
rapid mitigation and ensuring reliable power supply [3]. Several methods employing
Artificial Intelligence (Al) have been utilized, such as in [4], such as those that consider
system stability using the Random Forest method; however, these approaches do
not perform fault signature analysis, in [5], which have performed fault classification
using machine learning techniques such as K-Nearest Neighbor (K-NN) and Random
Forest (RF). These methods have demonstrated promising accuracy in distinguishing
different types of faults under various operating conditions.

Nowadays, Convolutional neural networks are starting to be used in electricity.
Such as being used to analyze transmission disturbances such as in [6], where CNN
is used to distinguish between normal and disturbed conditions; in [7], it is used
to predict the State of Charge on lithium-ion batteries; in [8] it is used to design
motor drive controls. Convolutional Neural Networks (CNNG) are highly effective
for analyzing fault signatures in power transmission lines due to their superior ability
to detect and recognize patterns within complex data. This is particularly relevant
for time-series data or visual representations of signals, such as wavelet transforms,
spectrograms, or phasor diagrams. CNNs offer several key advantages, including
automatic feature extraction, multidimensional data analysis, robustness against noise,
fast and real-time detection, high classification accuracy, and flexibility in handling
various data formats. These capabilities make CNNs highly relevant and powerful for
fault detection in power transmission systems, as they can efficiently learn complex
signal patterns, operate with low latency, and deliver high accuracy. As a result, CNNs
are well-suited for integration into intelligent fault diagnosis systems in modern power
networks, including Smart Grids.

However, their focus is primarily on fault type identification without a deeper
analysis of fault signatures, such as waveform characteristics or transient behaviors,
which are crucial for high-resolution fault diagnosis and root cause analysis in [9]
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Using Artificial Neural Networks (ANN) and Long Short-Term Memory (LSTM)
for fault classification, in [10] which methods using Kernel Wavelet have been applied
solely for fault location purposes, in [11] which The Firefly Algorithm and Linear
Programming methods have been employed to determine Directional Overcurrent
Relay (DOCR) coordination in response to faults, without identifying the specific fault
types involved, in [12] used fuzzy and decision trees to determine the configuration.
Compared with another, ResNet50 slightly outperforms the custom CNN in terms of
accuracy and Fl-score (0.94 for ResNet50 and 0.93 for CNN Custom), but requires
significantly more training time (141s for ResNet50, and 85s for CNN Custom)[13].
GoogLeNet also performs competitively (0.91 for F1 Score and 125s for Training
Time) but has a deeper architecture that introduces complexity[14]. On the other
hand, traditional classifiers such as SVM and RF exhibit lower performance (0.84
and 0.82 for F1-Score), especially in spatial pattern recognition, which supports the
well-established claim that CNN-based models are more suitable for image-based
tasks[15].

The operation of the power grid relies heavily on devices that monitor, control, and
protect power system networks. One such device is the Disturbance Fault Recorder
(DFR), which captures current and voltage waveforms during disturbance events.
While the DFR provides valuable data for assessing the characteristics of a disturbance,
it does not have the capability to identify the type or cause of the disturbance. However,
this information is crucial for effective power system operation and decision-making.
For instance, identifying the type of fault enables operators to take appropriate follow-
up actions. If the disturbance is caused by lightning, it may be necessary to improve
the grounding of transmission towers and optimize the protection angle. If animals
are the cause, installing deterrent devices becomes essential. In the case of disturbances
caused by foreign objects such as kites, outreach and awareness campaigns for nearby
residents are needed. Additionally, if vegetation is the source, targeted monitoring
and maintenance in affected areas must be carried out.

Traditionally, the fault classification process relies on the expertise of trained
personnel, which may not always be available in a timely manner. This manual
approach can also be time-consuming, despite the urgent need to restore normal
operations swiftly. Therefore, accurate and prompt identification of disturbance types
is critical to enabling efficient and timely system restoration.

This paper presents a model for analyzing fault sighatures obtained from Distur-
bance Fault Recorder (DFR) data, capable of distinguishing between various causes of
power system disturbances. The proposed model processes DFR images and classifies
them into several categories based on the disturbance type, such as lightning, foreign
objects, broken conductors, and others. The model is developed using a Convolu-
tional Neural Network (CNN), a method widely recognized for its effectiveness in
image processing and computer vision tasks. The structure of this paper is as follows:
Section 2 describes the development of the CNN-based fault signature analysis model.
Section 3 presents and discusses the experimental results. Finally, Section 4 provides
the conclusions drawn from this research.
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2. Convolutional Neural Network Model Development
2.1 Disturbance Fault Recorder

The Disturbance Fault Recorder (DFR) is a device that records the events that occur
in a power network. Faults and disturbances data can be retrieved from DFRs, which
generate a unified COMTRADE file. This file is critically important for engineers and
technicians in analyzing fault events and system disturbances [16]. Each disturbance
recorded by the DFR contains a fault signature as an image representing the system’s
characteristics during an event in the power system.

The Disturbance Fault Recorder (DFR) captures voltage signals (VA,VB,VC,VN)
and current signals (IA,IB,IC,IN) at a system frequency of 50 Hz, utilizing a sampling
rate of 128 samples per cycle. DFRs can be categorized into two types based on their
installation: internal DFRs, which are integrated within Intelligent Electronic Devices
(IEDs) such as protective relays, and external DFRs, which function as standalone
units. An example of a DFR recording is illustrated in Figure 1, where the current
(depicted in blue) and voltage (depicted in red) waveforms at a specific location in the
power system are shown over a given time interval.

ook (4 G0 L T

Figure 1. A Example of Disturbance Fault Signature Snapshot

Despite providing valuable information on current and voltage characteristics
during fault conditions, the Disturbance Fault Recorder (DFR) is not capable of
identifying the underlying cause of the disturbance. However, the recorded fault
signatures contain patterns that can be analyzed to infer both the type and cause of
the disturbance. Such fault signature analysis can support more accurate diagnosis and
facilitate appropriate repair and corrective actions, thereby enhancing the reliability
and responsiveness of power system operations.
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2.2 CNN Model Development for Fault Signature Analysis

CNN is a machine learning algorithm, quite similar to the well-known artificial
neural network (ANN), that is mostly used for image processing in computer vision.
CNN is powerful for analyzing data that can be structured into grid-like matrix,
such as images or videos. It processes the data by analyzing the features via kernel
optimization through multiple perceptrons. The Convolutional layer mainly uses
multiple Convolutional kernels to extract features from input data. Considering that
the input is a two-dimensional matrix, the two-dimensional Convolutional method
is used in the Convolutional layer [17]. A hybrid Convolutional network defines
a coordinate system on a graph and expresses the relationship between nodes as
a low- dimensional vector in the new coordinate system. At the same time, the
hybrid convolutional network defines a cluster of weight functions, which act on all
neighboring nodes centered on a node, and its input is the relationship representation
between nodes (a low-dimensional vector), and its output is a scalar value [8].

A Neutral Network receives input from a single vector and transforms it through a
series of hidden layers. Each Hidden Layer comprises a set of neurons, where neurons
are fully connected to all neurons in the previous layer. Three primary layers are used
to build ConvNets architecture: The Convolutional, pooling, and fully connected
layers.

The Convolutional layer accepts a volume with the dimension of Wy x Hy x Dy,
and requires four hyperparameters such as K (Number of filters), F (Spatial extend), S
(Stride), and P (Amount of zero padding). From the input, the Convolutional layer
will produce a volume of size W, x Hy x D,, where:

W —F+2P

w 1

2 S+1 ()
H-F+2P

Hy=——+-—2—+ 2

- °)
D, =K 3)

The pooling layer accepts a volume size W} x H; x Dj and only requires two
hyperparameters: F (Spatial extend) S (Stride). From the input pooling layer will
produce a volume of size W, x Hy x D;, where:

W, -F
W, =
S 4)
H,-F
H, = 5
2= <11 (5)
Dy =Dy (6)

Three layers became less popular because their contribution has been shown
minimal across various types of normalizations. Neurons in the fully connected layer
are connected to the previous layer, similar to a regular neutral network.
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The weight matrix would be large and mostly filled with zero for any CONV
layer in the FC layer, except in specific blocks due to local connectivity. Within these
blocks, many weights are identical due to parameter sharing. Consider a ConvNet
architecture that takes a 224x224x3 image and processes it through a series of CONV
Layer and Pool layers to reduce the volume of size 7x7x512. This reduction is achieved
by applying five pooling layers, each halving the spatial dimensions, resulting in a
final size of 7 (224/2/2/2/2/2 = 7). We can convert each of these three FC layers to
CONV layers as described above: Substitute the first FC layer that looks at [7x7x512]
volume with a CONV layer that uses filter size F=7, resulting in an output volume
[1x1x4096]. Next, replace the second FC layer with a CONV layer that uses filter
size F=1, producing output volume [1x1x4096]. After that, similarly replace the last
FC layer with F=1, giving a final output [1x1x1000].

In this study, there is input in the form of images that will be processed using CNN
with output in the form of classification results of 6 types of causes of disturbances to
determine follow-up decisions in disturbances. CNN is one of the advanced versions
of supervised machine learning algorithms that are quite powerful in extracting
information from images. Hence, an image is constructed into a matrix dataset and
then processed to retrieve some patterns through mathematical computations. CNN
is already widely used for computer vision or other applications that require visual
analysis. In this research, the benefit of CNN is applied to obtain a disturbance-type
classification based on the images generated by DFR.

CNN is the result of combining Convolutional operations with the backpropaga-
tion algorithm [18]. A CNN model consists of an input layer, Convolutional layers,
pooling layers, fully connected layers, and an output layer. The Convolutional layers
comprise multiple 2-D feature maps, while the fully connected layers comprise several
independent neurons [19]. In this study, the CNN model uses an input denoted as x ,
with an output y; representing the result of the classification.

Xl = (zxé-wmf) 0

iem

where:

X(]) : The output at layer [ for the position or node 0.

/= The activation function applied after the Convolutional and bias addition.
m : Set of neighbors (in the case of a graph) or a local region (in CNN).

KIZO : The kernel (or weight) at layer / between position i and 0.
B! : The bias term for layer /, added after the weighted summation.

3. Results and Discussions

3.1 DFR Data

The data used to develop the CNN-based fault signature analysis model consists of
600 images divided into six classifications with 100 images per class, as presented in
Table 1. Examples of the DFR image data are provided in Figure 2 - Figure 7. It can
be seen that the waveform during disturbance in the DFR images has altered from the
normal condition. Based on field conditions, normal conditions can be seen from the
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absence of impulsive changes in current and voltage increases. For other objects, there
is a fairly constant sinusoidal increase with a medium period of time. While lightning
conditions, seen from the presence of a voltage drop that experiences a decrease in
the peak sinusoidal phase with a short period of disturbance. Then for trees, there
is a phase of a tiered current increase with a medium length of time. Almost similar
to trees, for animals there is an indication of a tiered current increase with a short
time. And finally for equipment breakdowns there is an indication of a very unstable
sinusoidal current with a fairly short time.

The data is divided into two major datasets: the training and testing datasets. The
training dataset consists of about 500 data, with a small variation for each class. The
training dataset is also separated for cross-validation. Meanwhile, the test dataset with
around 100 of the total data is used to confirm the accuracy of the proposed model.

Table 1. Classification of disturbance type

Variable Description Value

0 No System Fault True (1), False (0)

1 Lightning/Flash Isolator True (1), False (0)

2 Metal Object/ Kites True (1), False (0)

3 Breakdown/Broken Conductor  True (1), False (0)

4 Animal True (1), False (0)

5 Tree True (1), False (0)
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Figure 2. Image data example for “no system fault”
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Figure 3. Image data example for “Lightning/Flash Isolator”
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Figure 5. Image data example for “Breakdown/Broken Conductor”
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Figure 6. Image data example for “Animal”
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Figure 7. Image data example for “Tree”
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3.2 CNN Model Development

In the CNN method used to analyze fault signatures in the transmission system, the
VGG19 architecture is employed. VGG19 consists of 19 layers, including Convolu-
tional, pooling, and fully connected layers, and utilizes uniform 3x3 filters across all
Convolutional layers to effectively capture local spatial features. This study used a
fine-tuning process to implement the VGG model and obtain the best results. The
VGG architecture offers several strengths that make it suitable for fault diagnosis
in power transmission systems, especially when fault signals are transformed into
visual formats such as wavelet spectrograms or time-frequency images. Its structure
is based on a consistent and straightforward design, using only 3x3 Convolutional
layers and 2x2 max-pooling layers, which makes it effective in learning local features
from images. This is especially beneficial for identifying transient patterns or sud-
den changes commonly found in electrical fault signatures. With deeper versions
like VGG-16 or VGG-19, the model can extract hierarchical features, allowing it to
accurately distinguish between various types of faults such as single line-to-ground
(L-G), line-to-line (L-L), double line-to-ground (L-L-G), and three-phase faults.

One of VGG’s key advantages is its compatibility with transfer learning. Since fault
data in power systems is often limited, VGG models pretrained on large datasets like
ImageNet can be fine-tuned on specific fault datasets, resulting in high classification
accuracy even with relatively small amounts of data. Compared to more complex
architectures like GoogLeNet or ResNet, VGG is also more stable and easier to train,
making it a practical choice for engineers and researchers who want effective results
without deep architectural complexity. Its widespread support in frameworks like
TensorFlow and PyTorch makes implementation straightforward, which is valuable
for academic research and industrial applications.

The ReLU activation function is applied after each Convolutional layer to intro-
duce non-linearity, while max-pooling layers are used for dimensionality reduction.
The input to the VGG19 model is resized to match the required dimensions, and the ar-
chitecture is selected for its proven performance in feature extraction and classification
tasks, especially in scenarios involving structured patterns such as fault signatures.

Based on the training results, three types of curves were obtained related to the
accuracy validity of the Convolutional Neural Network in analyzing fault signatures.
In the first curve, as shown in Figure 8, the accuracy and loss curves during the training
process intersect. The accuracy curve increases and approaches 1, while the loss curve
decreases and approaches 0. This indicates that the model’s accuracy improves, and
the training loss decreases progressively, demonstrating effective learning during the
training phase.

The second curve in Figure 9 compares the accuracy of the data for training and
the data for testing using the Convolutional Neural Network method. The curve
shows that the accuracy of both test and training data increases until it approaches the
value of 1. This is a good indication that the learning conditions on the Convolutional
Neural Network system have increasing accuracy.
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Figure 8. Comparison of Changes in Accuracy and Loss Results Graphs of CNN Training Data

v Z 4. .o
Training and Validation Accuracy

1.0 { -
—— Accuracy of Training Data

—— Accuracy of Validation Data

0.9 1

0.8 1

0.7 4

0.6 4

0.5 4

] 2 4 6 8 10

Figure 9. Comparison of Changes in Accuracy Results Graph of Training Data and Test Data in CNN

Meanwhile, the third curve in Figure 10 compares the loss between training
data and testing data using the Convolutional Neural Network method. The curve
for both datasets shows a downward trend, approaching a value near zero, which
indicates that the loss level in the Convolutional Neural Network-based analysis is
steadily decreasing. This trend suggests that the model is generalizing well and is not
overfitting to the training data.
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Figure 10. Comparison of Changes in Error Results Graph of Training Data and Test Data in CNN
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3.3 Fault Signature Prediction Results

This experiment also obtained a Confusion Matrix, as shown in Figure 11. The main
diagonal of the Confusion Matrix, which represents the number of correct predictions
made by the model, contains significantly more value than the off-diagonal elements.
This indicates that the CNN model demonstrates high accuracy in its predictions.

Confusion Matrix

True labels

Predicted labels
Figure 11. Obtained Confusion Matrix

The classification conditions were mapped from the testing data results, as shown
in Figure 12. In this condition, the accuracy and correctness level of the Convolutional
Neural Network analysis on fault signatures were captured.

The results demonstrate the model’s ability to identify and classify fault types
correctly, validating the effectiveness of the Convolutional Neural Network approach
in recognizing fault signature patterns.

Epoch 9: early stopping
sorflow/core/framework/local_rendezv
4/4 - = 155 p

accuracy is: 93.55%
/4 - = 15s 3s/step - accuracy: ©.9523 loss: ©.2979
728904724 %

Figure 12. Accuracy Result from Pyton

Based on the evaluation and testing results of the CNN system using VGG19
for fault signature analysis, the achieved final system accuracy was 93.87% with a
loss of 6.13%. This result indicates that the proposed model can accurately identify
fault types with a high degree of reliability, demonstrating its potential for practical
implementation in power system fault diagnosis.
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The model’s accuracy can be further evaluated based on each type of disturbance,
as presented in Table 2. The examples of the results of fault signature prediction using
the CNN model are shown in Figure 13 - Figure 18. These results show that the
proposed model can distinguish and classify the DFR images into appropriate classes.

Table 2. Accuracy for each type of disturbance

Class Description Accuracy

0 No System Fault 1

1 Lightning/Flash Isolator 0.82

2 Metal Object/ Kites 1

3 Breakdown/Broken Conductor 0.94

4 Animal 0.87

5 Tree 1
ettt || | i
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i Accuracy: Cortct Prodistad lsg Stavs. - No Systom Faul | | CAN Accuracy: Corrct Prodiood Fiag Stats. - No Systom Foul

Figure 13. Prediction result example for “no system fault”
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Figure 14. Prediction result example for “Lightning/Flash Isolator”
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Figure 15. Prediction result example for “Metal Object/ Kites”
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Figure 16. Prediction result example for “Breakdown/Broken Conductor”
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Figure 17. Prediction result example for “Animal”
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4. Conclusion

Based on the Confusion Matrix results, the classification condition as “No System
Fault” had 15 data correctly classified. In the” Lightning/Flash Isolator” classification
condition, 12 data were correctly classified, and two were incorrect as “Animal”. The
“Metal Object/ Kites” classification condition had 16 data correctly classified. While in
the classification condition as “Breakdown/Broken Conductor,” 19 data were correctly
classified, 2 data incorrect as “Metal Object/ Kites”. In the classification condition
as “Animal”, there were 13 data correctly classified, 1 data incorrectly classified as
“Metal Object/ Kites”, and finally, classification condition as “Tree” had 22 data cor-
rectly classified, 1 data incorrect as “Metal Object/ Kites” and 1 data incorrect as
“Animal”. From these conditions, it was found that almost all data were on the diag-
onal line, which means that the conditions were mostly in accordance with predictions.

Using a Convolutional Neural Network (CNN) for fault signature analysis in
transmission system disturbances yielded satisfactory results, achieving an accuracy of
93.87%. This performance was obtained using a dataset of 100 samples for testing
and 500 datasets for training, with six classification categories. The accuracy can be
further improved by reducing the number of classification categories or by increasing
the dataset size with high-quality data. In particular, expanding the dataset would
significantly enhance the model’s ability to generalize and recognize patterns more
effectively, thereby improving overall classification performance.
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