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Abstract

The determination of the optimal preventive maintenance time of the three-phase induc-
tion motor (88WC) during operation at 380V in the cooling system of the Semarang
Gas and Steam Power Plant (PLTGU) is achieved by combining the Power-Law Non-
Homogeneous Poisson Process (NHPP) model and the Differential Evolution (DE) algo-
rithm to achieve minimum total maintenance cost. The parameters of NHPP, 8 = 1,75
and 1 = 7198,99 hours, are estimated using the least squares method from the historical
failure data for the 2020-2024 period, which includes recording failures beyond 20.000
operating hours. The DE optimization results indicate that the optimal PM time is 371,60
hours which reduces the total cost from IDR 28.198.935 (for the 500-hour interval) to
IDR 20.299.822, thereby achieving cost savings of 38%. The validation process entails the
execution of Monte Carlo simulations, encompassing 1.000.000 iterations that culminate
in pre-optimization failure probability of 0,56%. Sensitivity analysis using a £20% param-
eter variation further substantiates the model’s robustness. This data-driven framework is
expected to enhance the reliability and cost-effectiveness of the PLTGU cooling system
and is scalable to other power-generating facilities.

Keywords: Preventive Maintenance, NHPP, Differential Evolution, PLTGU, Cost Optimization, Monte
Carlo Simulation

1. INTRODUCTION

The escalating demand for electricity can be attributed to two major factors: economic
growth and urbanization. The data reveals a substantial increase in national electricity
demand from 206.6 TWh in 2010 to 283.6 TWh in 2020, with an average growth
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estimate of 5.5% per year until 2030 [1]. PLTGU, which consists of GTG, HRSG,
and STG in a combined cycle power plant, plays a strategic role in maintaining the
continuity of the reliability of the Java-Bali power supply. Nonetheless, unplanned
production disruptions, including unscheduled downtime, have been shown to have a
detrimental effect on costs and result in a loss of production hours.

The efficacy of a given maintenance strategy is of paramount importance to the
reliability of power generation plants, particularly with regard to critical components
such as cooling systems. Data-driven predictive maintenance has been demonstrated
to facilitate proactive maintenance, thereby mitigating the occurrence of failures
[2]. Condition-based and reliability-centered approaches have been shown to be
effective in the prevention of system damage [3]. This necessity persists even in
scenarios dedicated to renewable energy, underscoring the importance of predictive
maintenance in addressing operational issues [4]. The capacity to discern failures with
precision is paramount for facilitating the formulation of maintenance decisions [5].

The integration of reliability analysis and optimization methodologies, exemplified
by Differential Evolution (DE), facilitates the optimization of proactive and efficient
maintenance scheduling [6] while concurrently enhancing system reliability through
the approximation of failure probability [7]. Such an approach has the potential to
minimize downtime and operational expenses [8].

PLTGU Semarang currently implements time-based maintenance (TBM) but
has not optimized historical failure data. Consequently, there is a possibility of over-
maintenance or under-maintenance. The objective of this study tries to estimate The
shape (B) and scale () parameters using the Least Squares method within the NHPP
framework, forecast the reliability and expected failure for the system adn optimize
the preventive maintenance (PM) interval of the three-phase induction motor of the
PLTGU Semarang cooling system with the DE algorithm.

The NHPP model is employed to model the failure rate, which varies over time
[9]. The parameters B and 1 are calculated from historical data using the least square
technique. The Differential Evolution (DE) algorithm is utilized to ascertain the opti-
mal preventive maintenance interval, with the objective of minimizing the aggregate
cost of maintenance, encompassing both preventive and corrective measures.

Several previous studies [10] [11] [12] [13], have not fully integrated cost ap-
proaches and algorithmic optimization. And study [14] and [15] utilized NHPP
but without focus on maintenance cost effectiveness. This reveals a research gap
regarding cost-based and reliability-focused PM interval optimization. This research
bridges the existing gap by formulating a model that combines the Power-Law
Non-Homogeneous Poisson Process (NHPP) and Differential Evolution (DE) for
optimizing the preventive maintenance interval of the cooling motor of PLTGU
Semarang to minimize the total cost [16] [17] [18]. The validation process is carried
out using Monte Carlo simulations to guarantee the reliability of the optimization
resules [19].

The method employed is a recursive optimization procedure that is verified using
Monte Carlo simulations. Considering this, the objective of this study is to enhance
maintenance efficiency, decrease operating expenses, and increase the reliability of
PLTGU Semarang’s cooling system, as well as to make a valuable contribution towards
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the advancement of more effective maintenance methods for the power industry in
Indonesia

2. METHODOLOGY

Repairable systems, as represented by the induction motor used in the cooling system of
PLTGU, exhibit fundamentally different failure behavior compared to non-repairable
systems. For non-repairable systems, the incidence of failure marks the end of the
component’s working life, and reliability studies often use probabilistic distributions
such as Weibull, Exponential, or Log-Normal to describe the time to failure [20].
Contrasting with this are repairable systems that enable restoration following a failure
but do not necessarily bring back the component to as-new condition. In many
instances, the repairs are incomplete (as old), and this necessitates a model capable of
capturing the varying failure rates resulting from aging and successive repairs [21].

Unlike the conventional Time-Based Maintenance (TBM) approach, which de-
termines maintenance intervals based on manufacturer guidelines or experiential rules
(e.g., every 500 operating hours) without accounting for variations in failure rates, the
Non-Homogeneous Poisson Process (NHPP) explicitly models time-dependent failure
behavior, where the rate may increase or decrease over time (B 71). By utilizing the
NHPP’s Mean Cumulative Function m(t), preventive maintenance (PM) intervals can
be tailored to the actual reliability characteristics of the system, thereby minimizing
the risk of over-maintenance (i.e., intervals that are too short) and under-maintenance
(i.e., intervals that are too long).

The NHPP model is selected as it can represent differences in failure rates among
different time intervals, especially in the scenario of minimal repair [22]. This study
adopts a quantitative methodology that integrates historic failure data with Power-Law
NHPP-based reliability modeling and optimization procedures. Data is gathered from
the three-phase induction motor maintenance history in PLTGU Semarang for the
years 2020-2024, including operating time to failure, failure mode, and maintenance
costs.

The shape and scale parameters of the Non-Homogeneous Poisson Process (NHPP)
model are approximated through the least squares procedure, in accordance with the
historical data. [23]. Then, to minimize total operating costs, comprising both PM
costs and failure costs, the preventive maintenance (PM) interval is optimized through
the Differential Evolution (DE) algorithm.

The methodology comprising the collection of failure data for a cumulative total
of 20.000 operating hours, estimation of reliability parameters through Power-Law
NHPP model, optimization of preventive maintenance intervals by the DE algorithm,
validation of optimization results through Monte Carlo simulation, sensitivity analysis,
and framing of conclusions, Figure 1 shown the flowchart for the method on this
study.

The Monte Carlo simulation is employed to test the robustness of the model
to stochastic variations in input parameters, and sensitivity analysis is employed to
investigate the effect of parameter variations on the optimization outcome. The
method is employed to make sure that the resultant PM interval is economically
optimal and practicable within the PLTGU system operating regime
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Figure 1. Flowchart for the Study

2.1 Data Collection

The data gathering, maintaining, and analyzing are intended to render the data more
structured in form, which aligns with the objectives of statistical analysis [24]. Data
utilized in this study are failure history data associated with one of the cooling motors
in the PLTGU Semarang cooling system, as presented in Table 1, with a range of
20,000 operating hours for the period 2020-2024. Data contains operating time and
failure occurrences (both in operating hours) as shown with table 1. Data undergoes
processing and analysis with the aid of statistical techniques and various computer
programs.
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Table 1. Motor Cooling System Operating Data

Operating Hour Status Operating Hour Status

0 Operating 11000 Operating
1000 Operating 12000 Operating
2000 Operating 13000 Operating
3000 Operating 14000 Operating
4000 Operating 15000 Operating
5000 Operating 16000 Operating
6000 Operating 17000 Operating
7000 Operating 17800 Fail
7200 Fail 18200 Fail
8000 Operating 18500 Fail
9000 Operating 18600 Fail
10000 Operating 18700 Fail
10200 Fail 20000 Operating

The data on operating hours can be utilized to determine availability as shown in
equation (1).

Uptimeymr

- % 1
Uptlme},m, TTR),W ( )

Availabilityyeqr

The data will also show the number of failures of the motor at different operating
hours. These data are then used to estimate the NHPP model parameters and determine
the optimum PM interval. The data are then estimated by using Minitab software
with NHPP model to get the parameters 3 and 1.

2.2 Model Power-Law Non-Homogeneous Poisson Process
Power-Law Non-Homogeneous Poisson Process (NHPP) is a powerful statistical
process that can be used to model systems with changing failure rates over time
and hence is particularly well-suited to repairable systems like induction motors.
NHPP enables failure patterns to be modeled based on historical data, and this enables
preventive maintenance intervals to be tailored to the true reliability characteristics
of the system [18]. The Power-Law Non-Homogeneous Poisson Process (NHPP)
model is used to describe failure rates that change over time and is thus well-suited for
systems that undergo aging or wear effects. This model includes two parameters: 3,
which is the shape parameter, and 11, which represents the scale parameter, and both
are determined from past failure data. The parameter 3 measures the rate of change
of the failure rate, while 1 represents the characteristic time scale of the system [25].
Power-Law Non-Homogeneous Poisson Process model is applied to model systems
that display an increasing failure rate with respect to age or use. It is assumed that the
failures occurring in a specified interval are Poisson distributed, but with the note that
the failure rate is non-uniform in the sense that it rises proportionally to time [26].
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Parameter estimation of the NHPP model to determine the optimal maintenance
interval for preventive maintenance of the cooling motor system of PLTGU from
historic failure experience is an important task for predictive system reliability behavior
and maintenance interval optimization. The physical meanings and effects of the
estimated parameters, 3 and 11, are important and influence the proposed maintenance
strategy. In this research, it is the time scale on which failures begin to manifest as
significant [25] when the cooling motor is operating, derived from an examination
of historical failure data. These parameters are estimated through the least squares
technique, which tries to reduce the gap between observed cumulative failure and
predicted failures that are calculated according to the NHPP model.

The NHPP model presupposes that failures happen according to a Poisson process,
yet the failure intensity varies as a function of operating time. Equation (2) presents
the failure intensity function of the Power-Law NHPP

-2 (0 o
Where:

(: Shape parameter, indicating the direction of the system’s failure rate
The important interpretation of (3, indicated as below:

* If B>1, failure rate increasing with time, most commonly due to wear-out or
aging of components.

* If B<1, The failure rate decreases, often due to early repairs (burn-in) or better
reliability after component replacements.

* If B=1, The failure rate remains constant, in accordance with a homogeneous
Poisson process in which failures are random, without aging tendency.[27]

nN: The parameter of scale refers to the typical temporal nature of the system (in
hours). In the context of this research, it represents the temporal context at which
failures become significant [25] within the operation of the cooling motor, as gleaned
from historical failure data.

(t): The real operating time, in hours, is the independent variable in the model.

The parameter estimation of the NHPP model for establishing the preventive
maintenance interval of the cooling motor system of PLTGU from historical fail-
ure data is necessary to forecast the reliability behavior of the system and optimize
the maintenance interval. The parameters 1 and B, which were estimated, have a
significant role in establishing the suggested maintenance strategy.

The Mean Cumulative Function (MCF), m(t), represents the expected number of
failures which occur by a specific time (t). This function is ascertained using equation

0
= (1) o)

where dan B are the parameter model that need to be estimated [19].
MCEF is a significant component of reliability analysis as it provides the shape of
the anticipated failure frequency over time period It plays a key role in determining
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the best PM interval because a high failure rate will increase CM costs as well as
downtime. Aside from this, the system reliability function, R(t), which provides the
probability that the system won’t fail up to time (t), may be obtained using equation

(4).

N\ B
R() = e = () (4)

The reliability function provides an important metric / measurement for evaluating
the effectiveness of preventive maintenance practices. The NHPP model has been
used widely in reliability analysis of complex systems, particularly where the failure
rate is not constant over time. The model allows accurate prediction of future failure
rates, which is essential in effective maintenance planning.

To determine the goodness of fit of the Power-Law Non-Homogeneous Poisson
Process (NHPP) model to the historical data, a group of goodness-of-fit statistics is
employed, which consists of the Sum of Squared Errors (SSE), Total Sum of Squares
(SST), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and the
coeficient of determination (R?). Collectively, these statistics offer a quantitative
judgment of the predictive model’s accuracy relative to real data. The Sum of Squared
Errors (SSE) quantifies the squared deviation of the actual number of failures from the
model predictions. The Total Sum of Squares (SST) quantifies the total variance in
the observed data compared to its mean. SSE, SST, MSE, RMSE, and R? are estimated
based on equation (5).

SSE = an[N(t,-) — () (5)

i=1

Where:
N(ti): The actual number of failures observed at time ¢;
m(ti): The expected number of failures from the NHPP model at time ¢;

n

SST=> (yi—9>7= - Zyz ()

=1

Where
yi : Cummulative observation
y : Average observation

SSE

2_q _ 2E
R*=1 ST (7)
MSE =1 — S5E (8)
n
RMSE = VMSE 9)

Low value of SSE indicates that the model predictions are close to the actual data,
meaning that the model parameters are accurate and the model can be trusted in
making decisions, e.g., optimization of preventive maintenance (PM) interval. SSE is
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most widely used as a measure of goodness-of-fit within literature to contrast how
well the NHPP model fits real data [28]. Application of combining SSE, RMSE, and
R? is most used in verifying NHPP models that have been estimated via the least
squares approach [29].

Together with Non-Homogeneous Poisson Processes (NHPP), historical data
enables additional analysis, for instance, computation of Mean Time Between Failures
(MTBF), Mean Time to Repair (MTTR), and MTBEF itself. MTBF, or the average
time between failures of a system or unit, is a significant parameter in reliability
analysis [30]. MTBEF can be approximated through equation (10).

n

1
MTBF = — E ([,‘ - [,',1), th=0 (10)
n
i—1

where:

¢ t; : The time of occurrence of the i-th failure
* ti-1 : The time of the previous failure
* n: The total number of failures observed during the observation period

A larger value of MTBF indicates a greater system reliability to proceed with
operations prior to the occurrence of the next failure [31].

Other than MTBF, Mean Time To Repair (MTTR) is also a very critical metric
in determining the reliability of repairable systems. MTTR is the mean time to repair
the system after a failure occurs and is utilized to measure the effectiveness of the
system or maintenance crew in recovering the operational states as quickly as possible.
The recovery process of the system is more efficient if the value of MTTR is lower.
MTTR (Mean Time To Repair) can also be calculated in this research, which is the
average time taken for the repair of a system after failure. The measurement formula
of MTTR is provided in equation (11)

1 n
MTTR = — ;
. > TTR; (11)
j—1
Where:

* TTR;: The repair time for the j_g, failure
* n: The total number of failure events that require repair

A lower MTTR indicates the ability of the system or maintenance team to restore
operations efficiently [32].

2.3 Algorithms and Differential Evolution (DE) Optimization

The Differential Evolution (DE) algorithm is a population-based optimization al-
gorithm inspired by evolutionary mechanisms to find optimal solutions in search
spaces [23]. The method operates by applying a population of candidate solutions or
individuals that change over time via mutation, crossover, and selection mechanisms.
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DE consists of four main components: initialization of the population, mutation,
crossover, and selection, which are executed iteratively to reach the optimal solution.
DE is less complex in composition than other techniques such as Genetic Algorithm or
Simulated Annealing but is highly effective regarding convergence as well as searching
the solution space [33].

The optimization begins with the creation of an initial population, which is
composed of several potential solution vectors (individuals) scattered randomly in the
given parameter space. The mutation operation generates a new vector by adding the
difference between two vectors chosen randomly from the population to the target
vector. Crossover incorporates features of the mutated vector and the target vector
for the generation of a trial vector. The objective function used is total operating cost
that considers both PM cost and repair cost resulting from failures. The objective
function in this study is shown by equation (12) are for the cost optimization.

_ Cpm + C/abor_pm N (@) (

C(l) [ Cem +Cpr-Tem + C/abor_(m) (12)
where:
Cout : Cost of preventive maintenance (PM) material, such as replacement of lubricants, bearings, or other
minor components carried out periodically to prevent failure (specified from company records, 2024).
: Labor cost for PM, calculated based on technician wages per maintenance session, typically a few
C]a/mr_pm hours. This is a low cost because PM is scheduled and does not require special skills (specified from
company records, 2024)
: Labor cost of corrective maintenance (CM), expressed in terms of technician salaries per
Cem maintenance session, which is longer than PM. This costs more than PM due to the unplanned
nature and the need for more specialist expertise (specified from company records, 2024).
: Downtime cost, or the loss in production per hour when PLTGU is unavailable due to motor
Cpr failure. This cost is high because downtime can cause disruption in electricity supply and
significant financial losses ((specified from company records, 2024))
Ten : Mean Time To Repair (MTTR), the average time taken for corrective repair following failure,
based on PLTGU Semarang’s historical data.
Clabor cm The labor cost for CM
m(t) = (ni) B : The cumulative expected number of failures up to time ¢ calculated from the NHPP model
t : The PM interval in hours, and the optimization variable in this study.

The goal of this strategy is to optimize the preventive maintenance (PM) interval
for optimizing the overall costs of the system that includes PM costs, repair costs (CM),
and related downtime using the Differential Evolution (DE) algorithm. In the context
of PM interval optimization, the DE algorithm is utilized for determining the PM
interval that successfully reduces the total operational costs by considering PM costs,
repair costs, and downtime costs.

The cost optimization function consists of two primary elements:

M ; PM unit cost per time, decreasing with greater interval (t) as PM

frequency decreases.
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. (@) (Cem+Cpr-Tem+Clapor_an) 3 Which increases with increasing interval(t),
because the expected number of failures m(1) increases by the NHPP model.

The process of applying Differential Evolution (DE) involves:

1. Population Initialization Here in the present work, the population at the begin-
ning is 50 members within the provided interval of T and the search boundaries
of T (Tiin dan Tiax)-

2. DE Algorithm Parameters The following DE parameters are utilized:

* Mutation Factor (F) The parameter F= 0.8, determines the degree of changes
(shifts) generated by the mutation operator. The value 0.80 implies that the
mutation vector changes by 80% of the difference between two random
solutions.

* Crossover Probability (CR) Controls the probability with which each el-
ement of the solution will be put through mutation based on the mutation
vector rather than retaining the initial value. A value of 0.9 indicates that 90%
of the genes in the new proposed candidate solution come from the donor
vector.

* Maximum Number of Generations (Gmax) The maximum number of
evolutionary cycles is specified. The procedure stops either at the 200th
generation or at the fulfilment of another convergence criterion.

* Enhancement Acceptance Threshold (tol = 0.01)

* If the improvement (or decrease) in the optimal cost function value between
generations is less than 0.01, it is considered that the saturation level has
been reached, thereby making it possible to halt the evolutionary process
prematurely.

3. Evolutionary Cycle for Every Generation For every solution X; in the popula-
tion:
a) Mutation Operator

* Select three indices r1, r2, r37 randomly
* The donor vector is created as equation (13)

Vi= Xfl +F(XT2 - Xf}) (13)
This donor vector employs the difference of two arbitrary solutions to search

the decision space
b) Crossover Operator

* For every solution element j, create the trial vector U j based on the
principle from equation (14)

V,;j = {V,'J if random < CR, X,'J, otherwise} (14)

A high probability ensures most of the new genes come from the donor vector

but retains a small segment of the old genes to ensure diversity.
c) Selection Operator

* Compute the average cost per hour for U; and the previous solution X;.
* Choose the option with the lower cost value to move to the next generation
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X" = {U,if C(U)) < C(X;), X;, otherwise.} (15)
Where:
- X; : Current solution vector i .
— X1, X2, X;3  : Three random solutions (indices\distinct from i)
4 : Donor vector of the mutation X,; + F(X,» — X,3)
—F : The mutation factor, which control the scale of shift.
—CR : Crossover probability, the probability of a member from the
donor vector crossover into the trial vector.
- U; : The trial vector, achieved through the crossover of I; dan X;
— Uy :Thej — thentry of U;.
— X : The solution that proceeds to the next generation, chosen between

between Ui and Xi based on the cost function value.

4. Maximum Iterations and Final Results

The evolution process then continues until the maximum number of generations
Gmax or the fitness improvement is less than the tolerance (fitness<tol). The optimal
best solution Tope is selected as the individual with minimum cost throughout the
entire evolution.

This strategy is substantiated by research form study [34] [35], which show the
efficiency of Differential Evolution (DE) in determining the best maintenance schedule
in power generation systems. The parameters chosen for DE (F, CR, and NP) have
been shown to yield convergent results after a reasonable number of iterations.

This compromise results (trade-off) in a globally minimum non-linear cost func-
tion corresponding to the optimal PM interval. Optimization aims to determine the
best value of ¢ that would minimize C(t) in equation (12) and maintain low costs
of PMs and failure risks. This study applies PLTGU Semarang’s actual operational
data to estimate the cost parameters such that the model can reflect real operational
conditions.

2.4 Monte Carlo Simulation
In the present study, Monte Carlo simulation is utilized for assessing the performance
of the preventive maintenance (PM) interval developed by optimization based on
Differential Evolution (DE). The simulation is aimed at calculating the probability
of failure and the average operating costs per hour within the framework of system
uncertainty, such as uncertainties in operating conditions, load, and repair quality.
The basic model employed is the Non-Homogeneous Poisson Process (NHPP)
with a power-law failure intensity function. The simulation method incorporates a
time transformation derived from the cumulative distribution function (CDF) of the
NHPP, which described in equation (16)

Fo =1 e = (1) (16
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To simulate the random failure times, we use the inverse transform sampling
method as in equation (17). The method uses the cumulative distribution function
(CDEF) of the NHPP model to calculate the failure times. By using the inverse of the
CDF on random numbers that are uniformly distributed, we can simulate random
failure times based on the failure rate specified by the NHPP model. This method
helps in simulating the failure events over time and shows how reliable the system is
and how it fails in the simulated model

T=nm-(- [nU)l/ﬁ, U ~ Uniform(0, 1) (17)

The simulation is carried out for M=10°=1.000.000 runs. In a run, failure time T;

is calculated repeatedly until the cumulative time exceeds the Tpyy interval. If there is
one or more failures prior to the Tpy interval, such a run is tallied as a "failure."

The estimate for how many failures happens before PM is obtained with equation

(18)

A Totalfailurefrom iteration
M

(18)

Monte Carlo simulation was utilized because it can deal with complex distribution
models like NHPP quite easily and can also consider the uncertainties of system
parameters [36]

2.5 Sensitivity Analysis

The Differential Evolution (DE) algorithm is a population-based optimization al-
gorithm inspired by evolutionary mechanisms to find optimal solutions in search
spaces [23]. The method operates by applying a population of candidate solutions or
individuals that change over time via mutation, crossover, and selection mechanisms.

A Sensitivity analysis is performed to see how changes in parameters affect the
optimal PM interval. The parameters that are considered for sensitivity analysis are
NHPP model’s § and 1 parameters, along with Cppm, Com, Cpr, and Ty Each of
these parameters is changed by +20% of its normal value.

The results of the sensitivity analysis will provide the extent to which the optimal
solution fluctuates as the parameters of the model fluctuate. If the optimal solution
does not change significantly despite these fluctuations, then it is considered robust
and reliable.

Sensitivity analysis shows which factors have the most impact on the optimal
solution and gives guidance on how risks and uncertainties are to be dealt with in
maintenance planning. Sensitivity analysis is one way of monitoring the effect of
varying input parameters on optimization results. We will be able to determine which
parameters have the largest impact on total cost and optimum PM interval and provide
an indication of how sensitive the model is to data uncertainties from this analysis.

Sensitivity analysis is also important to determine that the suggested solution is
still the best alternative under different operating conditions that can occur [37].



3. RESULT

3.1 Repairable System Analysis
Table 2 shows the historical failure data of one of our cooling motors in the PLTGU
Semarang cooling system over 20000 operating hours for the years 2020 to 2024.
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Table 2. Failures Over Time in Repairable Systems

Repairable System Failure Data

Operating Hour Year
7200 2022
10200 2023
17800 2024
18200 2024
18500 2024
18600 2024
18700 2024

Table 2 data indicates that the motor failed many times within various operating
hours, depicting a growing failure rate over time. Figure 2 plots the relationship
between event times and failures. Data concerning Uptime, TTR, and N_fail are
acquired from the system’s log sheet. Using this data, the MTTR and Annual Avail-
ability are computed using equations (11) and (1), respectively, and are presented in

Table 3.

Table 3. Repairable Systems Performance Profile

Repairable System Performance Profile

Year Uptime TTR(hour)  N_fail MTTRear Availability, .. (%)
2020 654,72 0 0 0 100

2021  4.401,42 0 0 0 100

2022  3.197,55 104,72 1 104,7167 96,8289447972
2023  7.247,80 168,45 1 168,45 97,7286364402
2024  4.404,90 1.644,67 5 328,93334 72,8134793522

After that, the global MTTR and MTBEF of the system are estimated using equa-

tions (10) and (11), and the results are presented in Table 4

Table 4. MTTR and MTBF

MTTR
MTBF

value(hour)
200,70
2671,43

The data are used to estimate the parameters of the NHPP model and compute
the PM interval. Data are then estimated using Minitab software according to the
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NHPP model,

MCF

Scaled Total Time on Test

Putranugraha er al.
where the parameters § and 1 are found from Table 5.

Table 5. Software estimation for parameter shape and scale

Parameter | Estimate
Shape (3) 1,75261
Scale (1) 7198,99

Mean Cumulative Function for jam op
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175261 7198,99
7- ]
. I
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Figure 2. Mean Cumulative Function from operating hour data

Total Time on Test Plot for jam op
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Figure 3. Scaled Failure Number for operating hour data
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3.2 Power-Law Non-Homogeneous Poisson Process (NHPP) Parameter Estimation

The estimation results of NHPP parameters using the least squares method from the
cooling motor system 88WC historical failures in PLTGU are presented in Table 5
with Shape (B) = 1,75261 and Scale (n) = 7198,99. This is a case of increasing failure
rate over time, which may be due to wear-out or aging of components.

3.3 Intensity Function

Finally, the intensity function (or failure rate) of the Power-Law NHPP model is
calculated using equation (1) for which the Shape parameter () = 1,75261 and the
Scale parameter (1) = 7198,99.

M) = B(4)P-

n

n
— 175261 (1000 \1,75261—1 _
A(1000) = L7261 (L1000 )175201 =1 = 0, 0000553112

Intensity Rate vs Time

0.0010 4
0.0008 1

0.0006 4

Alt

0.0004

0.0002 1

0.0000 +

0 10000 20000 30000 40000 50000
Time (hour)

Figure 4. Plot intensity rate vs time

The calculated failure rate =0,0000553112 is for 1000 hours of operation, that
is, at t = 1000. Then, the intensity function will be extrapolated to 40000 hours of
operation as forecast, and the results are shown in Table 9

3.4 Mean Cumulative Function dan Reliability

MCEF is a crucial component of reliability analysis as it provides an understanding
of the expected failure frequency over a specified time interval. This information is
necessary in determining the ideal PM interval because a higher failure frequency
will lead to increased corrective maintenance (CM) cost and downtime. Further, the
reliability function of the system, R(t), is the probability that the system is free from
any failure until time (t). MCF and reliability are estimated by equations (2) and (3)
based on the already estimated shape (B) and scale (1)) parameters. A reliability plot is
then generated as figure 5 from the calculations.



534 Derry Putranugraha er al.

m(t) = ()P

m(1000) = (7113329)175261 = 0,0316063796

R(t

) =
R()e=m(1000) = 0, 9688878811 == 97%

Reliability vs Time
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Figure 5. Plot reliability vs time

The computed MCF and Reliability values are 0,0316063796 and 0,9688878811,
or 97%, at 1000 hours of operation (t = 1000). The intensity function is calculated up
to 40000 hours of operation as a forecast, which is presented in Table 9.

3.5 Model Validation and Parameters

To evaluate how well the Power-Law NHPP model fits the historical data, some
goodness-of-fit criteria are employed, i.e., Sum of Squared Errors (SSE), Total Sum
of Squares (SST), Mean Squared Error (MSE), Root Mean Squared Error (RMSE),
and coefhicient of determination (R2). The description of the historical data is shown
in Table 6.

Table 6. Study Observation Data Recap vs MCF

i Failuretime (1)  Cumulative Observation (y;) MCF (m(r))
1 7200 1 1,000245533
2 10200 2 1,8403030630
3 17800 3 4,8753944421
4 18200 4 5,0687364104
5 18500 5 5,215852203
6 18600 6 5,265291312
7 18700 7 5,314930176
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From the summary in Table 4, the mean observation asi  is calculated as y =
1320304454647 = 4, Subsequently, Nj; and N2 are calculated to obtain the value of SSE
as presented in Table 7. SSE is then calculated using equation (4), SST using equation
(5), R2 using equation (6), MSE using equation (7), and RMSE using equation (8).
The results of the calculations are presented in Table 8.

Table 7. SSE calculation result

Validation Parameter SSE Recap
yi m(1) N, N_{ti}M2}
1,000245533  -0,000245533  6,03x 108
1,840030630 0,159969370 0,0255899
4875394421  -1,875394421  3,5161340
5,068736104 -1,068736104 1,1421481
5,21852203 -0,215852203 0,0466046
5,265291312 0,734708688 0,5398197
5,314930176 1,685069824 2,8394660

~N o g |h W N |

Table 8. Validation Result

Validation Parameter Value
SSE 8,110740695
MSE 1,158677242
RMSE 1,076418711

R2 0.7104

%Error 15,38%

The total SSE approximately ~ 8,11 is the summation of all discrepancies between
observed failure counts (y;) and model-predicted values mg). The smaller the SSE,

the better the model fit; the 8,11 values on a scale of 7 data points suggests the
squared error is acceptable for a repairable system. The mean squared error per
observation (MSE) is approximately 1,16 failures. This means, on average, the squared
error per observation is approximately ~ 1,16. The square root of MSE (RMSE) is
approximately &~ 1,08 failures. Practically speaking, this means that on average the
difference between the model prediction and actual number of failures is approximately
1 failure per observation point. The coeflicient of determination, R2 ~0,71, indicates
that approximately 71% of the variability in the occurrence of failure is accounted
for by the Power-Law NHPP model. The other 29% is due to factors outside the
system or random variation. The model is "adequate” for the reliability data of a
repairable system. The ratio error, i.e., the root means square error (RMSE) relative
to the maximum failure value of 7 or the mean value of 4, is between 15% and 27%.
Based on the maximum value, the RMSE value of 0,7 is about 15,4%. It indicates
that the mean prediction error is just about 15% of data scale. Expected failure over
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reliability is shown in Figure 6, and a summary of the system analysis is provided in

Derry Putranugraha er al.

Table 9.
Table 9. System Analysis Recap
System Analysis Recap
o) Intensity A(f) Availability,.,, (%)  Reliability (R(r))  Expected failure (m(r))
0 0 100 1 0

1000 0,000055311200 99,3656599190 0,96888788110 0,031606379600
3000 0,000126082200 98,5540173088 0,80562178490 0,216140896100
5000 0,000184944000 97,8789561038 0,58954071250 0,528411498600
7000 0,000238032500 97,2701066327 0,38591808020 0,952130159500
10000  0,000311037500 96,4328435822 0,16908439000 1,777357339700
13000 0,000378678200 95,6571016182 0,06002235950 2,813038127200
15000  0,000421581200 95,1650654705 0,02695589630 3,613553219900
17000  0,000463073000 94,6892134786 0,01112652080 4,498423760100
19000  0,000503359200 94,2271888010 0,00423216060 5,465042625600
20000  0,000523100700 94,0007819112 0,00253314500 5,978293662400
25000  0,000618397600 92,9078622899 0,00014565760 8,834251667800
30000  0,000709012300 91,8686417723 0,00000526470 12,154495795900
35000  0,000795909800 90,8720513851 0,00000012210 15,918195331200
40000 0,000879747000 89,9105580296 0,00000000180 20,108502840200

Expected Failure vs Reliability
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Figure 6. Expected failure vs Reliability

3.6 Optimization Using Differential Evolution Algorithm

The Differential Evolution algorithm is used to optimize the function from equation
(12). In this study, the optimization is carried out using Python software, with input
data provided in Table 10.
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Table 10. Data parameter Input for Optimization

Parameter Input Data

Parameter Value Remarks
B 1,75261 Parameter shape
n 7198,99 Parameter scale
Cpm 8.000.000 PM Cost per event (IDR)
Cem 40.000.000 CM Cost per event (IDR)
Cpr 10.000.000 Downtime cost per hour (IDR)
CLABOR. Tech 40.000 Technician cost per hour (IDR)
CLABOR.AS. Tech 15.000 Assistant Technician cost per hour (IDR)
Nk 2 Number of Technician (People)
N Astech 4 Number of Assistant Technician (People)
Tem 5 PM Duration (hour)
Tt old 500 Interval PM (hour)
Tem 200,7 MTTR / CM Duration (hour)
TwMin 100 Lower Bound of PM Interval (hour)
T Max 50.000 Upper Bound of PM Interval (hours)
N 1.000.000 Number of Simulations for Monte Carlo

Table 11. DE Optimization Result

DE Optimization Result

Iteration  PM Interval (hour)  Cost per Hour (IDR)

1 136,015916324 78.652,5577794853
2 490,721000000 56.182,8349760817
3 440,661264529 55.379,5280136585
4 415,602153864 54.882,0710082142
5 376,498755269 54.631,2637216776
6 374,399013549 54.628,9102553112
7 374,399013549 54.628,9102553112
8 374,399013549 54.628,9102553112
9 374,399013549 54.628,9102553112
10 373,520080622 54.628,3028340961
11 373,520080622 54.628,3028340961
12 372,1625173808 54.627,8081802478
13 372,1625173808 54.627,8081802478
14 371,6041270191 54.627,7622970472
15 371,6041270191 54.627,7622970472

Based on the given input parameters, equations (13), (14), and (15) were solved
using Python software to obtain an optimal value of approximately TopT &~ 371,61



538 Derry Putranugraha er al.

hours and a corresponding cost per hour of 54627,76 IDR. Therefore, the total cost
of one PM cycle at T = 371,61 hours is 20.300.014,80 IDR. This gives a difference of
total cost per hour of 1770,11 IDR, which represents a cost saving of 3,14% when
the optimal PM interval is used. The cost savings here are consistent with the total
cost of a single PM cycle at the extended interval of 28.198.935,37 IDR, that is, the
cost is lowered by 38,9%. The DE optimization iterations and PM comparison are
displayed in Table 11 and Table 12, respectively, while the graphical illustration of
the DE iterations is presented in Figure 7. The PM cycle interval using Topr is also
presented in Table 13.

Interval PM Evolution (DE)
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360

340
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Figure 7. DE iteration Plot

Table 12. Summary of Comparison with Optimal T

Summary

Tpwm_old Torr Deviation Remarks

PM Interval 500 hours 371,61 hours 128,39 hours Shorter Interval

TotalCostper 5o 307 87IDR/hour  54.627,76 IDR/hour  1770,11 IDR/hour  3,14% Cheaper

hour
Total Cost per PM

28.198.935,37 IDR 20.300.014,80 IDR 7,898,920.56 IDR 38,9% Cheaper
cycle

34,55% More

PM Cost per hour 17400,00 IDR/hour 23411,88 IDR/hour -6011,88 IDR/hour
Expensive
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Table 13. Enhanced PM Cycle with Tp Interval

Enhanced PM Cycle with TOPT

Cycle T Reliability (R(t))  Expected failure (m(t))
1 371,6061934 0,994425491 0,005590104200
8 2972,849547 0,808374907 0,212729334000
9 3344,455741 0,769954928 0,261423301300
10 3716,061934 0,730259988 0,314354660400
15 5574,092901 0,527758822 0,639115877100
20 7432,123868 0,347372069 1,057358828100
25 9290,154835 0,209615239 1,562481624000

3.7 Monte Carlo Simulation

With these parameters thus determined, shape (B) = 1,75261 and scale () = 7198,99,
and the optimum PM interval Topt = 371,61 hours calculated using the Differential
Evolution algorithm, the Monte Carlo verification is carried out on a computer
program, phyton specifically with the Weibull distribution function (weibull_min).
The simulation then runs for 1.000.000 iterations, and the failure number is compared
with Top. The probability is then estimated from equation (18) yielding the value
of 0,005585, or 0,5585%.

Monte Carlo simulation of 1.000.000 runs has a failure probability of 0,005585
(0,5585%) before reaching the 371,60-hour interval. This very low probability guar-
antees that the optimum interval is reliable under actual operations, lessening the
chances of sudden failures that lead to expensive downtime. The confidence level is
95%.

The Cumulative Distribution Function (CDF) may then be determined by in-
serting the result into equation (16), deriving a function for CDF against time, as
indicated in Figure 8. And the U shape visualization for minimal cost shown in figure
9

CDF vs Time
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Figure 8. CDF vs Time
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U-Shape Visualization: Total Cost vs PM Interval
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Figure 9. U shape visualization

3.8 Sensitivity Analysis

This sensitivity analysis is performed to understand how changes in key parameters
affect the total cost per hour in the maintenance planning model. Each parameter will
be varied by +20%, as shown in Table 14.

Table 14. Model Sensitivity Analysis

Sensitivity Analysis +20%

Parameter Value Topr (hour)  Cost per hour(IDR)
Crm 6.000.000,00 425 49245,72067
Cpm 10.000.000,00 330 60009,80392
Cem 32.000.000,00 350 54507,4176
Cem 48.000.000,00 390 54748,10699
Cpr 8.000.000,00 430 48589,46688
Cpr 12.000.000,00 320 60666,05772
Tcm 160,56 420 48589,46688
Tem 240,84 330 60666,05772
B 1,40 600 111494,784
B 2,10 250 34474,54145
n 5759,19 320 69540,25254
n 8638,79 420 46100,51871

1. Effect of Preventive Maintenance Cost (Cppy)

* A rise in the expense that is associated with preventive maintenance directly
contributes to a rise in the expense incurred per hour. This is a logical oc-
currence, as higher preventive maintenance expenses contribute to operating
costs despite its goal of reduce the chance of equipment failure.
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2. Effect of Corrective Maintenance Cost (Ccpm)

* The impact of this change is relatively small compared to the effect of changes
in Cpy, indicating that the cost per hour is less sensitive to variations in
Ccm- This could be since corrective maintenance occurs less frequently than
preventive maintenance in this model.

3. Effect of Downtime Cost (Cp)

* The high sensitivity to the cost of downtime indicates that Cpy has a significant
effect on operational expenses (cost), particularly in systems focused on high
availability, such as power plants.

4. Effect of Mean Time To Repair (Tcm)

* Longer repair times will significantly add costs per hour, perhaps because of
greater production losses due to extended downtime.

5. Effect of Parameter Shape ().

* The failure rate of the system, Parameter is a very sensitive parameter. A lower
value of means a stable failure rate and hence higher cost per hour in this case.
A larger means a rapidly increasing failure rate, which can lower the cost per
hour, perhaps by allowing more effective scheduling of maintenance.

6. Effect of Parameter Scale (1)

* Smaller value of 1) causes failures to happen earlier, thereby raising the cost
per hour. A larger 1 postpones failures from occurring, thereby lowering the
cost per hour of operation.

4. CONCLUSION

The shape (B) and scale (1)) parameters were estimated using the Least Squares method
within the NHPP framework, based on historical failure data exceeding 20,000
operating hours., the estimated values were 3=1.75261 1=7,198.99, indicating an
increasing failure rate over time.

The system’s reliability is predicted to decline exponentially as operating hours
increase, while the expected cumulative number of failures continues to rise. This
pattern highlights the necessity of adapting preventive maintenance (PM) intervals in
accordance with the actual reliability behaviours of the system.

This study also demonstrates that reducing the PM interval using the Power-Law
NHPP model and DE algorithm can optimize the operation cost of the PLTGU
cooling system by over 38%. The derived optimal PM interval is 371,60 hours.
Validation via Monte Carlo simulation and sensitivity analysis proves the reliability
and robustness of the optimum solution. Despite a significant variation in parameters
(£20%), TOPT varied only by approximately +20%. This indicates the solution’s
insensitivity to reliability and cost parameter uncertainty.

From the results of this research, it is advised to apply the ideal preventive mainte-
nance interval proposed in the cooling system of the PLTGU Semarang. Furthermore,
the method established here can be modified to be applied in other power generation
systems and other equipment
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