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Abstract
Solar power forecasting is essential for integrating PV plants into power grids, ensur-
ing stability and aiding system operators (SOs) in decision-making. However, existing
day-ahead models struggle with rapid weather changes, while deep learning models
require extensive historical data, making them impractical for new PV plants. This study
proposes a hybrid approach combining the XGBoost algorithm for hourly solar irradiance
prediction using Numerical Weather Prediction (NWP) data and a physical model to
convert irradiance into power. The XGBoost model is periodically retrained via a sliding
window mechanism to adapt to dynamic weather conditions. A case study using two
years of 271 kWp PV data from NIST (US) and historical NWP data from ECMWF
ENS for GHI forecasting, alongside ECMWF HRES for power conversion, demonstrated
the method’s effectiveness. Using just one week of historical data for initial training, the
model achieved an nRMSE of 13.35%–13.53%, nMAE of 6.9%–7.03%, and nMBE of
-2.03% to -0.29%. The proposed approach improves PV forecasting reliability for new
plants with limited data, serving as an intermediary solution until sufficient historical data
is available for deep learning models.

Keywords: Hybrid method, NWP, Physical model chain, Day-ahead PV power forecast, XGBoost

1. Introduction
The global transition toward sustainable energy systems is a pivotal response to the
climate crisis, driven by the urgent need to reduce greenhouse gas emissions. Solar
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energy, being one of the most abundant and cleanest sources of power, plays a critical
role in this vision. According to recent data, the price of solar PV systems has dropped
by over 80% in the last ten years [1], making it one of the most affordable renewable
energy options available. Innovations in materials, efficiency improvements, and
integration with energy storage technologies have further enhanced the viability of
solar energy as a reliable power source [2] and have driven the exponential growth of
installed solar capacity worldwide [3].

Despite its advantages, solar power generation is inherently intermittent, as solar
irradiance—the primary driver of PV power output—varies with weather conditions,
time of day, and seasonal changes. This variability poses challenges for grid stability
and reliability, making accurate forecasting essential.

A key factor influencing PV system output is Global Horizontal Irradiance (GHI),
which represents the total solar radiation received per unit area on a horizontal
surface, comprising both direct and diffuse sunlight. Direct Normal Irradiance (DNI)
refers to sunlight traveling directly from the sun, while Diffuse Horizontal Irradiance
(DHI) represents scattered sunlight reaching the Earth’s surface from the atmosphere.
Together, these components determine the amount of energy available for photovoltaic
(PV) conversion.

Since solar irradiance fluctuates due to atmospheric conditions, Numerical Weather
Prediction (NWP) data plays a crucial role in forecasting its variations [4]. NWP
models simulate atmospheric processes using physical equations and observational data,
generating forecasts for key meteorological variables such as cloud cover, temperature,
humidity, wind speed, and pressure—all of which influence solar radiation. Beyond
these weather parameters, NWP data also provide irradiance forecasts, making them
a critical input for solar energy prediction.

Once solar irradiance reaches the PV system, its conversion into electricity de-
pends on multiple physical factors, including PV cell material properties, the angle
of incidence of sunlight, temperature, and environmental conditions. Additionally,
system components such as inverters and panel configurations play a crucial role in
overall performance. A model that considers all these factors is often referred to as a
physical model chain [4].

As the share of solar power in the global energy mix continues to grow, the
importance of robust forecasting models cannot be overstated. Short-term forecasting
enables better decision-making in energy dispatch, balancing renewable generation
with demand, and reducing reliance on fossil fuels. In particular, day-ahead forecasting
plays a critical role in anticipating short-term fluctuations to help grid operators balance
supply and demand, optimize energy storage, and maintain system stability.

Several studies such as [5], [6], [7], and [8] have examined the application of
machine learning (ML) and artificial neural network (ANN) models for photovoltaic
(PV) power forecasting. However, purely ML- or ANN-based models are highly
dependent on extensive historical training data to generate accurate forecasts—a
requirement that may not always be feasible in real-world applications.

Unlike physical models, ML-based methods do not incorporate predefined rules or
domain knowledge, but instead learn patterns directly from data. Consequently, the
availability of diverse and representative historical data becomes crucial for effective
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generalization. As highlighted by [8], achieving reliable accuracy with deep learning
models often necessitates at least two years of historical data.

This research addresses the challenges of day-ahead forecasting resulting from the
inherent intermittency of solar irradiance by using a hybrid approach that combines
NWP data with a physical model chain and machine learning (ML) techniques. The
motivation for this hybrid framework stems from the complementary strengths of
both components: while physical models encapsulate the structured physics-based
irradiation-to-power conversion, ML models excel at capturing complex, nonlinear
relationships of irradiance forecast from NWP data. Furthermore, a sliding window
mechanism is combined with the ML techniques to ensure model adaptability over
time and maintain high forecast accuracy in dynamic environments.

By improving solar irradiance and solar power forecasting methods, this research
contributes to the enhanced operational efficiency of PV systems, facilitates a better
insight and decision-making for PV system operations and grid management. The
remainder of this paper is organized as follows: Section 2 Solar Irradiance and
Irradiance-to-power Conversion, Section 3 Methodology, Section 4 Results and
Discussion, and Section 5 Conclusion and Future Work.

2. Solar Irradiance and Irradiance-to-power Conversion
2.1 Solar Irradiance
The solar irradiance received at the earth’s surface is subject to several modifying
factors, including atmospheric effects, seasonal variations, and diurnal patterns. Solar
irradiance measured in [W/m2] refers to the power per unit area received from the
sun in the form of electromagnetic radiation. Generally, the relationship between
DHI, DNI and GHI is shown as follows:

GHI = DNI · cos(θz) + DHI
DHI = GHI – DNI · cos(θz)

(1)

Variables that directly related to solar irradiance are shown in the Table1.

Table 1. List of Variables and Their Symbols

Variable Name Symbol

Solar Zenith Angle θz

Angle of Incidence θi

Panel Surface Tilt Angle β

Panel Surface Azimuth Angle γ

Solar Azimuth Angle γs

Albedo ρ

The relationship between those variables for the tilted surfaces can be mathemati-
cally expressed as:

cos(θi) = cos(θz) cos(β) + sin(θz) sin(β) cos(γ – γs) (2)
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The European Centre for Medium-Range Weather Forecasts (ECMWF) provides
two valuable real-time numerical weather prediction (NWP) datasets for global hori-
zontal irradiance (GHI) forecasting: ECMWF ENS and ECMWF HRES. ECMWF
ENS offers 15-day hourly ensemble forecasts, providing 50-ensemble members for
GHI based on varying initial conditions, while ECMWF HRES delivers single pre-
diction of 10-day hourly high-resolution atmospheric forecasts. Both datasets are
issued four times daily at 00Z, 06Z, 12Z, and 18Z, with global coverage at 0.5◦× 0.5◦
and 0.1◦ × 0.1◦ lon/lat spatial resolutions, respectively. This frequent release sched-
ule, along with their comprehensive geographical coverage, makes them ideal for
both day-ahead and intra-day solar forecasting, capturing atmospheric variability and
improving the accuracy of solar irradiance predictions.

Although ECMWF data was historically restricted from public access, recent
initiatives have significantly improved its availability. The first publicly accessible
ECMWF ENS dataset was introduced in [9], while [10] facilitated broader access to
ECMWF HRES for researchers and practitioners. In [7], ECMWF HRES data was
employed to forecast day-ahead power production for the day-ahead market (DAM)
in the Netherlands. Similarly, [11] utilized historical NWP forecasts from the Nordic
MetCoOp system, which integrates HARMONIE-AROME models. Furthermore,
[12] combined ECMWF NWP data with forecasts from the European Organisation for
the Exploitation of Meteorological Satellites (EUMETSAT) to nowcast hourly PV energy
production, demonstrating the versatility of NWP data in solar energy forecasting.

2.2 Irradiance-to-power Conversion
Irradiance-to-power conversion refers to the process that transforms incoming irra-
diance into produced power. While Long Short-Term Memory (LSTM) networks
outperform models such as multiple linear regression, SARIMAX, and LASSO in
day-ahead solar power forecasting given the input parameters [7], they require exten-
sive historical data, which may not always be available, especially for new PV plants.
Although these advanced techniques excel in capturing forecasting complexities, [8]
suggests that at least three years of data are needed for deep learning to make reliable
predictions, making them impractical for immediate forecasting needs such as for a
newly-built PV plant. In contrast, physical model chains offer a solution as they do
not require long historical data [13].

2.2.1 Physical Model Chain
The efficiency of irradiance-to-power conversion depends on PV cell materials, angle
of incidence, temperature, and environmental conditions. A physical model chain,
based on fundamental physics, simulates PV performance by incorporating solar irra-
diance, temperature, atmospheric conditions, and PV component characteristics like
module efficiency and electrical behavior. A physical model it provides an interpretable,
robust, and reliable framework for solar energy conversion.

Following a structured process from solar positioning to PV power output, a
physical model chain sequentially links each step, forming a comprehensive, physics-
based prediction of PV performance, as illustrated in Figure 1, adopted from [4]. This
approach enables extrapolation beyond observed data, allowing simulations under



IJECBE 95

extreme conditions. Unlike data-driven models, which may struggle outside their
training range, physical models reliably predict PV behavior across diverse conditions.

Losses in the physical model chain include losses from surrounding obstructions,
DC and AC cable losses due to resistance in the wiring, inverter losses during DC-to-
AC conversion, and transformer losses from voltage adjustments. Some losses depend
on site-specific factors such as device specifications (e.g., cable material, inverter
efficiency) and site-specific conditions (e.g., shading profiles, soiling).

Figure 1. Physical model chain

2.3 Forecasting Operationalization

To fully leverage the advantages of day-ahead PV power forecasting, it must align
seamlessly with the operational standards of real-world PV power system operators.
[14] defines four key forecast parameters: forecast lead time (L), which represents the
time between the forecast submission and the first forecast; forecast resolution (R),
referring to the step size or time interval of the submitted forecasts; forecast horizon
or span (S), indicating the period between the first and last submitted forecasts; and
forecast update rate (U ), which specifies how frequently forecasts are submitted.

Those parameters ensure that the forecast is both accurate and practical, mimicking
the operational requirements of a real-world system operators such as HUPX in
Hungary [5], CAISO in California [15], and China [16]. Figure 2 illustrates the
forecast parameters.
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Figure 2. Forecast parameter

3. Methodology
3.1 Hybrid Method
Most solar power forecasting research focuses on either data-driven or physical models.
To the best of the authors’ knowledge, only two studies—[5] and [17]—have developed
a two-step forecasting framework, where the first step involves GHI forecasting,
followed by power forecasting in the second step.

This study presents a novel hybrid forecasting method that combines machine
learning and physical modeling. The first stage employs XGBoost regression with a
sliding window approach and periodic retraining mechanism, ensuring continuous
adaptation to recent weather patterns without requiring extensive historical data. In
the second stage, a physical model chain converts the predicted irradiance into AC
power output, enhancing accuracy and practical applicability. This hybrid approach
bridges the gap between data-driven and physics-based models, offering a robust and
scalable solution for day-ahead PV power forecasting. Figure 3 illustrates the whole
workflow.

Figure 3. Research workflow

The forecast parameters used in this experiment – L24h, R15min, S24h, and U24h –
are aligned with real-world operational standards for day-ahead PV forecasting, as
outlined in [5], [15], and [16].

3.1.1 XGBoost Regression
Extreme Gradient Boosting (XGBoost) is a supervised model commonly employed
for solving multivariate regression and time series problems. XGBoost is a non-linear
model, expected to capture temporal patterns and non-linear dynamics inherent in
solar irradiance data.
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XGBoost is an optimized gradient boosting algorithm that builds an ensemble of
decision trees for predictive tasks. As an ensemble learning method, XGBoost combines
multiple weak learners (typically decision trees) into a strong predictive model. Each
new tree focuses on reducing the residual errors of previous ones, continuously
improving performance. Figure 4 illustrates the XGBoost workflow [18].

The objective function L(ϕ) of XGBoost is:

L(ϕ) =
n∑
i=1

l(yi, ŷi) +
K∑
k=1

ω(fk) (3)

where l(yi, ŷi) is the loss function that measures the difference between the true
label (value) and the predicted label (value), yi is the actual (observed) value or the true
target, ŷi =

∑K
k=1 fk(xi) is the predicted value, which is the sum of the output of the

k-th tree for the input xi, ω(fk) is the regularization term, and K is the total number
of trees.

Figure 4. XGBoost flow

The XGBoost takes ECMWF ENS ssrd data (see Table 4) as the input features to
produce GHI forecast. Hyperparameter tuning for the XGBoost model was performed
using a grid search over the parameter ranges shown in Table 2. The number of
boosting rounds was set to 100, with early stopping applied after 10 rounds without
improvement on the validation set to prevent overfitting.

A sliding window approach with periodic retraining is employed for hourly
irradiation prediction. This approach complements XGBoost, which does not require
extensive historical data for effective learning. These mechanisms ensure that the model
is continuously updated with the most recent data, effectively capturing the periodic
and seasonal characteristics of solar irradiance. Figure 5 illustrates the integration
of XGBoost with the sliding window and periodic retraining approach for hourly
GHI prediction. The resulting hourly GHI forecast is then downscaled using cubic
interpolation to achieve a 15-minute resolution, complying with R15min.
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Table 2. Hyperparameter ranges used for XGBoost tuning

Hyperparameter Values / Range

max_depth {5, 8}
learning_rate {0.05, 0.1}
subsample {0.8, 1.0}
min_child_weight {5, 8}
gamma {0, 0.1}
lambda 0.1
alpha {0.1, 0.2}
colsample_bytree {0.8, 0.4}
n_estimators 100

Set parameters:
n_timesteps (per day)

n_days_initial
n_days_validation
n_days_retrain
n_days_lookback

Start

perform initial
training

(n_days_initial,
n_timesteps) to get

initial_model

save initial_model
as current_model

loop through
remaining data day

by day

predict GHI
using

current_model

is n_days_retrain
reached?

save retrained_model
as current_model

perform retrain
(n_days_lookback) to
get retrained_modelCalculate

error
metrics

Yes

No

save error
metrics, y_true

and y_pred

End

Figure 5. Flow of XGBoost with sliding window mechanism
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3.1.2 Physical Model Chain
To calculate the output power given the predicted GHI from the XGBoost regression
model, a set of physical models at each step is selected. The physical model chain
requires additional input variables such as GHI forecast, solar zenith angle, solar
azimuth angle, and extraterrestrial radiation constant. Table 3 summarizes the models
used in each step of the physical model chain and details the model-specific variables.

Table 3. Physical Models and Required Inputs Variables

Physical Model Reference Input from ECMWF HRES

Separation (S)
Erbs [19] dewpoint (d2m), pressure (sp)
DIRINT [20] dewpoint (d2m), pressure (sp)
Erbs-Driesse [21] dewpoint (d2m), pressure (sp)

Transposition
Perez-Driesse [21] albedo (fal)

Reflection (R)
ASHRAE [22] -
Physical [23] -
Martin-Ruiz [24] -

Cell temperature (C)
SAPM [25] wind speed (u10, v10), ambient

temperature (t2m)
PVSyst (Faiman) [26] wind speed (u10, v10), ambient

temperature (t2m)
NOCT SAM [27] wind speed (u10, v10), ambient

temperature (t2m)
PV Model (P)

Evans [28, 29] -
De Soto (Single diode 6 param.) [23] -

Loss modeling is omitted, as it is highly system-specific. Instead, standard assump-
tions or average conditions are applied for practical implementations. Additionally,
cubic spline interpolation is used to downscale temperature and wind speed forecasts
from ECMWF HRES to comply with the R15min.

3.2 Dataset
The dataset used to test the proposed method consists mainly of ECMWF ENS and
ECMWF HRES. As a reference, publicly accessible ground measurement GHI data
from a well-maintained, research-grade sensor at the grid-connected solar PV arrays
of the National Institute of Standards and Technology (NIST) [30] [31] is used to evaluate
the proposed method. Missing values in the dataset are filled using weather station
data from the same period, ensuring no gaps in ground truth GHI values. Figure 6
visualizes ground-measured GHI data between sunset and sunrise over two years. A
summary of the dataset is provided in Table 4. Table 5 details the specifications of the
NIST grid-connected ground PV array, while Figure 7 illustrates its location.
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Figure 6. Heatmap of measured GHI

Table 4. Datasets and Variables

Item Ground Truth (NIST) ECMWF ENS ECMWF HRES

Data period 1 Jan 2015–31 Dec 2018 1 Jan 2017–31 Dec 2018 1 Jan 2017–31 Dec 2020
Data resolution 1-min 1-hour 1-hour
Release time - 00Z 00Z
Horizon - 91 hours 91 hours
Variable

Power output Power [kW] - -
GHI GHI [W/m2] ssrd [W/m2] -
DHI DHI [W/m2] - -
DNI DNI [W/m2] - -
Tilted irradiance POA irradiance [W/m2] - -
U wind component - - u10 [m/s]
V wind component - - v10 [m/s]
Surface pressure - - sp [Pa]
Temperature Ambient temperature [°C] - t2m [K]
Dewpoint - - d2m [K]
Total column ozone - - tco3 [kg/m2]

Forecast albedo - - fal

Total column water vapor - - tcwv [kg/m2]

3.3 Evaluation and Metrics
The performance of the predicted results from both stages is evaluated using true
values from the NIST dataset as references, as shown in Table 6. The cell temperature
predictions from the cell temperature model cannot be directly validated due to
the lack of relevant true measurements in the NIST dataset. Instead, the predicted
cell temperature is compared to the measured module-backsheet temperature. The
reflection loss model is unique as it does not have corresponding reference data in the
NIST dataset. Consequently, its evaluation relies on the mean percentage of reflected
irradiance, which provides an indirect measure of its performance.
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Table 5. NIST Ground PV Array Specifications

Location Gaithersburg, Maryland, US
Type Ground-mounted, without tracker
Latitude [◦N] 39.1319
Longitude [◦E] -77.2141
Elevation [m] 138
Panel Tilt [◦] 5
Panel Azimuth [◦ from North] 180
Rated DC Power [kW] 271
Module Model Sharp NU-U235F2
Module Technology Monocrystalline silicon - front contact
Module Rated Power [W] 235
Number of Modules 1152
Module Per String 12
Numbner of Combiner Boxes 7
Number of Source Circuits (SC) 96
Inverter PV Powered PVP260kW, 1 unit

Figure 7. NIST ground PV array and weather station location

Table 6. Validation of Physical Model Chain Output

Model Output Parameter Validation Data Source

XGBoost Regression Hourly GHI Themopile Pyranometer
Separation DNI dan DHI Pyranometer Eppley 8-48 and

Pyrheliometer Kipp & Zonen CHP 1
Transposition POA flat-plate Silicon IMT Solar

Si-420TC.
PV Model VDC, I, PDC current, voltage and power from

inverter PV Powered PVP260kW
Inverter PAC measured PAC by the inverter PV

Powered PVP260kW
Cell temperature cell temperature Omega RTD-3-F3102-72-T
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Three widely accepted metrics to evaluate the forecasting models’ performance:
root mean square error (RMSE) in Eq. 4, mean absolute error (MAE)in Eq. 5, and
mean bias error (MBE) in Eq. 6. These metrics collectively provide a comprehensive
analysis of the model’s accuracy and bias, offer a balanced approach to analyze the
trade-off between accuracy and interpretability in the model’s predictive performance

RMSE =

√√√√1
n

n∑
i=1

(ŷi – yi)2 (4)

MAE =
1
n

n∑
i=1

∣∣ŷi – yi
∣∣ (5)

MBE =
1
n

n∑
i=1

(ŷi – yi) (6)

4. Result and Discussion
4.1 GHI Forecast
Given the 50 ensemble-member predictors from the ECMWF ENS data and the true
GHI values from the NIST dataset, several combinations of n-days initial training and
m-days for periodic retraining were tested to predict hourly GHI using the XGBoost
model. Combinations of 3, 7, 14, and 30 days for both n-days and m-days.

Table 7 presents the performance metrics for the overall predicted hourly GHI
across all combinations of initial training and periodic retraining. The results indicate
that the variation in RMSE is influenced by the choice of initial training duration
and periodic retraining interval (sliding-window size). In general, for the same initial
training duration, a periodic retraining interval of 3 days results in higher RMSE,
MAE, and MBE values compared to periodic retraining intervals of 7, 14, and 30 days.

Regardless of the selection of initial training days, the RMSE for periodic retraining
intervals of 7, 14, and 30 days ranges between 146.25 W/m2 and 151.95 W/m2. The
MAE from roughly 91 W/m2 to 94 W/m2, and between –0.11 W/m2 to 6.55 W/m2

for MBE. Considering the small differences in RMSE, MAE, and MBE, the smallest
initial training duration (e.g., 3, 7, or 14 days) is preferred as it requires only a small
historical dataset. Table 8 compares the performance of the hourly irradiance forecast
of the XGBoost, LSTM, and the persistence forecast for the given training days. For
XGBoost, only the best result from the periodic retraining process is shown for each
training day (based on the initial training period). The table confirms that the XGBoost
forecast outperforms the persistence baseline forecast in terms of both RMSE and
MAE. For all initial training days (3, 7, 14, and 30), the RMSE ranges from 146.25 to
148.34 W/m2. Compared to LSTM, similar RMSE values are achieved when using
60, 90, 180, or 360 days of historical data to train the LSTM model.

Considering there is no significant difference in RMSE (as shown in Figure 8) and
MAE (as shown in Figure 9) for initial training days of 3, 7, 14, and 30 for periodic
retraining intervals of 7, 14, and 30 days, the combination of 3 or 7 initial training
days with a periodic retraining interval of 7 or 14 days is preferred as the best model, as
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Table 7. Performance Metrics Hourly GHI Forecast

Initial Training (Day) Periodic Retraining (Day) RMSE MAE MBE

3 3 166.12 105.04 -13.87

7 151.49 93.86 -0.11

14 147.39 91.89 -5.19

30 146.25 91.48 -4.13

7 3 174.55 108.99 -20.59

7 148.56 93.03 -3.78

14 150.03 94.33 -1.67

30 147.57 91.44 -5.22

14 3 170.29 106.88 -15.82

7 148.80 93.43 -3.32

14 149.61 93.29 -5.10

30 149.37 93.14 -5.23

30 3 167.85 106.87 -13.56

7 151.95 94.82 -2.38

14 148.52 93.76 -6.55

30 148.34 94.10 -4.47

Table 8. Performance of the Proposed Method for hourly GHI

Model Training Days RMSE MAE MBE

3 192.13 131.85 -60.28
7 346.08 234.72 -193.88

LSTM: 14 344.12 237.15 -181.43
Layer 1 (128 units, activation: tanh, dropout: 0.2) 30 188.02 121.56 -71.05
Layer 2 (128 units, activation: tanh, dropout: 0.2) 60 140.62 87.61 -6.97
Layer 3 (128 units, activation: ReLU, dropout: 0.2) 90 140.15 89.55 -2.81

Dense Layer 120 302.46 217.55 -110.58
150 294.39 205.11 -125.54
180 132.33 84.52 3.76
360 128.95 79.19 7.83

3 146.25 91.48 -4.13
XGBoost (proposed) 7 147.57 91.44 -5.22

14 148.80 93.43 -3.32
30 148.34 94.10 -4.47

Persistence NA 230.36 134.59 0.17

it allows predictions to be made using limited historical data. Furthermore, Figure 10
demonstrates that predictions made with 7-day periodic retraining produce less bias
compared to other periodic retraining options, regardless of the initial training days.
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Figure 8. XGBoost RMSE performance

Figure 11 compares the actual GHI with the predicted GHI from the best-
performing XGBoost model. To illustrate seasonal variations, a randomly sampled
week from each season is plotted, highlighting the model’s tendency to underestimate
the true GHI, as reflected in the negative MBE values.

4.2 Physical Model Chain
4.2.1 Separation
Figure 12 presents the RMSE, MAE, and MBE metrics for DNI and DHI using the
Erbs, DIRINT, and Erbs-Driesse separation models.

For DNI, DIRINT achieves the lowest RMSE (264.13 W/m2), while Erbs-Driesse
has the highest (295.45 W/m2), with Erbs in between (278.31 W/m2). MAE fol-
lows the same trend: 133.11, 141.06, and 149.89 W/m2. However, for MBE, Erbs-
Driesse performs best (–23.08 W/m2), whereas DIRINT has nearly double the bias
(–39.25 W/m2). Overall, RMSE and MAE differences are minimal.

For DHI, Erbs-Driesse consistently outperforms Erbs and DIRINT across all met-
rics. The separation model’s DNI and DHI outputs then proceed to the transposition
stage in the physical model chain.

4.2.2 Transposition
Transposition model converts DNI and DHI from the separation model into POA
irradiance at a given tilt . POA irradiance accounts for tilt, azimuth, and albedo.
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Figure 9. XGBoost MAE performance
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Figure 11. Predicted and true hourly GHI

Figure 13 shows the RMSE, MAE, and MBE metrics for this model using DNI and
DHI inputs from three separation models.

Despite variations in GHI and DNI, RMSE and MAE remain consistent at approx-
imately 220 W/m2 and 160 W/m2, respectively, with minimal POA discrepancies in
MBE. Seasonality has little impact on RMSE and MAE, but MBE varies significantly.
Winter and fall introduce a bias of about –50 W/m2, nearly double that of summer
and spring, making bias-free predictions more challenging.

The POA irradiance output serves as the input for the subsequent phase in the
physical model chain, the reflection loss model and the cell temperature model.

4.2.3 Reflection Loss
A portion of POA irradiance is reflected back to the sky, which depends on the tilt
angle of the surface and the incoming solar angle, resulting in effective irradiance



IJECBE 107

0

100

200

300

Di
re

ct
 N

or
m

al
Irr

ad
ia

nc
e 

[W
/m

²]

RMSE

0

50

100

150

MAE

60

40

20

0
MBE

Erbs DIRINT Erbs-Driesse
0

20

40

60

80

100

Di
ffu

se
 H

or
izo

nt
al

Irr
ad

ia
nc

e 
[W

/m
²]

Erbs DIRINT Erbs-Driesse
0

10

20

30

40

50

Erbs DIRINT Erbs-Driesse
0

10

20

30

Separation Model

Separation Model Performance by Metric and Variable

Season
Overall Winter Spring Summer Fall

Figure 12. Separation model performance
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that is always lower than POA irradiance. Figure 14 shows daily and seasonal mean
reflection losses from three models. The Martin-Ruiz model has the lowest overall
loss (3.4%), while the Physical model, based on Fresnel’s laws, reflects 3.9% of POA,
peaking at 4.3% in winter. All models follow a similar seasonal pattern, with the
highest losses in winter and lower losses in other seasons. The ASHRAE model
performs slightly better than the Physical model, with a 3.6% overall loss.
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Across all models, 3.4%–3.9% of POA is reflected, leaving 96% as effective
irradiance, which is then passed to the PV model.
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Figure 14. Average reflection losses of the POA irradiance

4.2.4 Cell Temperature
Cell temperature model is used to observe the operating temperature of PV cells based
on POA irradiance, ambient temperature, wind speed, and the specific properties of
the PV panel. The module-backsheet temperature and the ambient temperature data
are used as the reference of the cell temperature. The temperature delta between
those two references and the cell temperature model is as shown in Figure 15. The
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Figure 15. Average temperature delta

results indicate that for all tested models, the overall and seasonal temperature delta
between the cell temperature and the module-backsheet temperature remains below
2◦C, except during the summer, when the delta approaches 3◦C. In terms of ambient



IJECBE 109

temperature, the temperature delta against the cell temperature is below 5◦C for all
models in every season except in the summer where the temperature delta reaches its
highest value, up to 6.8◦C.

4.2.5 PV Model
The PV model generates DC power output using cell temperature and effective
irradiance from the reflection loss model. The Evans model provides only DC power,
while the De Soto model outputs voltage, current, and power. Figure 16 displays their
performance, showing nearly identical RMSE and MAE values in both magnitude
and seasonal patterns. The overall RMSE is 38.8 kW, and the MAE is 19.7 kW. The
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Figure 16. PV model performance

key difference between the two models lies in MBE performance. The Evans model
exhibits a lower bias at –5.21 kW, while the De Soto model has –9.15 kW, indicating
both models underestimate power output, though Evans does so less. With a total
PV capacity of 271 kW, the RMSE of 38.8 kW corresponds to an average prediction
error of 14% of installed capacity, highlighting the forecast’s uncertainty relative to
the system’s maximum potential.
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4.2.6 AC Power Forecast
The AC power forecast is the final output of this framework, derived from the PV
model’s DC power using inverter specifications. As shown in Table 9, 54 (3 × 1 ×
3 × 3 × 2) physical model combinations were evaluated based on RMSE, MAE, and
MBE. RMSE values range from 36.18 kW to 36.69 kW (13.35%–13.53% of the 271
kWp capacity), while MAE spans 18.38 kW to 19.07 kW (6.9%–7.03%). Given the
minimal differences in RMSE and MAE, MBE serves as the primary ranking metric,
emphasizing the influence of model selection on AC output.

Table 9 presents the top 10 model combinations, ranked by MBE, where values
closer to zero indicate lower bias. The nMBE ranges from -2.03% to -0.29%. Further
details are available in Section Appendix 1.

Table 9. Performance Comparison of Physical Model Chain Combinations

PV
Model

Cell
Temperature

Reflection
Loss Transposition Separation RMSE (kW) MAE (kW) MBE (kW)

Evans NOCT Martin-Ruiz Perez-Driesse Erbs-Driesse 36.42 18.51 -0.79
Evans NOCT Martin-Ruiz Perez-Driesse Erbs 36.38 18.46 -0.83
Evans NOCT ASHRAE Perez-Driesse Erbs-Driesse 36.51 18.64 -0.85
Evans NOCT ASHRAE Perez-Driesse Erbs 36.47 18.58 -0.91
Evans NOCT Physical Perez-Driesse Erbs-Driesse 36.37 18.47 -0.97
Evans NOCT Physical Perez-Driesse Erbs 36.33 18.42 -1.02
Evans PVsyst Martin-Ruiz Perez-Driesse Erbs-Driesse 36.31 18.50 -1.13
Evans NOCT Martin-Ruiz Perez-Driesse DIRINT 36.34 18.43 -1.15
Evans NOCT Martin-Ruiz Perez-Driesse Erbs 36.28 18.45 -1.17
Evans PVsyst ASHRAE Perez-Driesse Erbs-Driesse 36.41 18.63 -1.19

Table 9 confirms trends observed in Figure 12, where the Erbs and Erbs-Driesse
models yield lower MBE values than DIRINT. Similarly, the Martin-Ruiz and
ASHRAE models dominate the best-performing reflection loss models, aligning with
Figure 14, which shows approximately 3.5% reflection loss for these models.

For cell temperature, the NOCT model outperforms others, consistent with
Figure 15, where NOCT and PVsyst exhibit lower mean temperature deltas between
cell and module-backsheet temperatures. Small temperature differences significantly
impact AC power output. Additionally, the Evans PV model outperforms the more
complex De Soto model, reaffirming Figure 16, where Evans consistently surpasses
De Soto.

Overall, minimizing errors in each phase of the physical model chain improves
AC power predictions. Notably, the separation and transposition models contribute
the highest irradiance RMSE, making them critical for accurate irradiance estimation.
Meanwhile, only about 3% of the irradiance is reflected, while 96% is absorbed and
converted into electricity.

Table 10 compares the AC power output (kW) forecast performance of the pro-
posed hybrid method, persistence forecast, and LSTM-based data-driven forecast
across different training durations. Each model chain step is numerically encoded
according to its order, as defined in Table 3. For the LSTM model, all NWP ENS
and NWP HRES variables listed in Table 3 are used as predictors.
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Table 10. Performance of the Proposed Method

Model Model chain combination RMSE MAE MBE

S3R3C3P1 36.42 18.51 -0.79
Proposed method S2R2C1P1 36.18 18.39 -1.79

(hybrid of XGBoost + S3R1C1P2 36.67 19.10 -5.08
physical model chain) S2R1C1P2 36.70 19.03 -5.41

S2R2C1P2 36.55 18.89 -5.52
Training Days

3 42.18 30.04 -4.30
7 38.55 25.96 -4.81

LSTM: 14 71.61 51.52 19.87
Layer 1 (128 units, activation: tanh, dropout: 0.2) 30 64.71 47.49 -12.56
Layer 2 (128 units, activation: tanh, dropout: 0.2) 60 37.43 25.24 -1.59
Layer 3 (128 units, activation: ReLU, dropout: 0.2) 90 36.04 23.31 -2.11

Dense Layer 120 52.51 39.52 -9.62
150 36.14 24.93 -2.36
180 34.14 22.98 -1.23
360 50.18 35.68 -14.07

Persistence NA 47.40 22.36 -0.13

The results confirm that the proposed hybrid method outperforms the persistence
forecast in both RMSE and MAE. When the LSTM model is trained on fewer than 60
days of historical data, its RMSE exceeds that of the proposed method. However, the
best-performing LSTM models (trained on 90, 150, and 180 days) achieve a slightly
lower MAE than the proposed approach.

Figure 17 provides the sample of the predicted AC power, true AC power, and
actual GHI at a 15-minute temporal resolution for the same first two weeks as the
hourly predicted GHI shown in Figure 11. The predicted AC power values correspond
to those produced by the best-performing model chain, S3R3C3P1, listed in Table 9,
which has an MBE of -0.79 kW.

The true output power generally follows the pattern of the actual GHI. However,
on days with highly fluctuating irradiance, such as October 5, 2017, the forecasted
power is less accurate compared to days with more stable irradiance, such as December
4, 2017.

5. Conclusion and Future Work
This study investigated day-ahead PV power forecasting using ECMWF NWP data.
ECMWF ENS data was utilized for hourly GHI prediction, while ECMWF HRES
data supported the physical model chain calculation. Unlike the deep learning method
such as LSTM, the proposed method requires minimal historical data, enables im-
mediate PV power forecasting following PV plant commissioning. Thus, it offers a
viable alternative where long historical datasets are unavailable. By applying periodic
retraining mechanism the model effectively adapts to changing conditions, enhancing
forecasting accuracy. The physical model chain improves understanding of how PV
system components interact to convert solar irradiation into AC power.
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Figure 17. Predicted 15-min PV AC power output-1

Day-ahead NWP data tends to underestimate actual GHI, primarily due to chal-
lenges in capturing rapid cloud dynamics and motion, leading to discrepancies between
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predicted and actual irradiance levels. Further advancements may involve integrating
additional data sources, such as satellite imagery to improve predictions under rapidly
changing atmospheric conditions.
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Appendix 1. Appendix

Table 11. Performance Comparison of Physical Model Chain Combinations

PV
Model

Cell
Temp.

Reflection
Loss Transposition Separation

RMSE
(kW)

MAE
(kW)

MBE
(kW)

Evans NOCT Martin-Ruiz Perez-Driesse Erbs-Driesse 36.42 18.51 -0.79
Evans NOCT Martin-Ruiz Perez-Driesse Erbs 36.38 18.46 -0.83
Evans NOCT ASHRAE Perez-Driesse Erbs-Driesse 36.51 18.64 -0.85
Evans NOCT ASHRAE Perez-Driesse Erbs 36.47 18.58 -0.91
Evans NOCT Physical Perez-Driesse Erbs-Driesse 36.37 18.47 -0.97
Evans NOCT Physical Perez-Driesse Erbs 36.33 18.42 -1.02
Evans PVSyst Martin-Ruiz Perez-Driesse Erbs-Driesse 36.31 18.50 -1.13
Evans NOCT Martin-Ruiz Perez-Driesse DIRINT 36.34 18.43 -1.15
Evans PVSyst Martin-Ruiz Perez-Driesse Erbs 36.28 18.45 -1.17
Evans PVSyst ASHRAE Perez-Driesse Erbs-Driesse 36.41 18.63 -1.19
Evans NOCT ASHRAE Perez-Driesse DIRINT 36.42 18.55 -1.23
Evans SAPM Martin-Ruiz Perez-Driesse Erbs-Driesse 36.29 18.51 -1.24
Evans PVSyst ASHRAE Perez-Driesse Erbs 36.37 18.57 -1.25
Evans SAPM Martin-Ruiz Perez-Driesse Erbs 36.25 18.46 -1.29
Evans SAPM ASHRAE Perez-Driesse Erbs-Driesse 36.39 18.63 -1.31
Evans PVSyst Physical Perez-Driesse Erbs-Driesse 36.26 18.45 -1.31
Evans NOCT Physical Perez-Driesse DIRINT 36.30 18.39 -1.34
Evans PVSyst Physical Perez-Driesse Erbs 36.23 18.41 -1.36
Evans SAPM ASHRAE Perez-Driesse Erbs 36.34 18.58 -1.36
Evans SAPM Physical Perez-Driesse Erbs-Driesse 36.24 18.46 -1.43
Evans SAPM Physical Perez-Driesse Erbs 36.20 18.42 -1.48
Evans PVSyst Martin-Ruiz Perez-Driesse DIRINT 36.25 18.42 -1.49
Evans PVSyst ASHRAE Perez-Driesse DIRINT 36.33 18.54 -1.56
Evans SAPM Martin-Ruiz Perez-Driesse DIRINT 36.22 18.43 -1.60
Evans PVSyst Physical Perez-Driesse DIRINT 36.21 18.38 -1.67
Evans SAPM ASHRAE Perez-Driesse DIRINT 36.31 18.55 -1.68
Evans SAPM Physical Perez-Driesse DIRINT 36.18 18.39 -1.79

De Soto NOCT Martin-Ruiz Perez-Driesse Erbs-Driesse 36.47 18.88 -4.55
De Soto NOCT Martin-Ruiz Perez-Driesse Erbs 36.44 18.84 -4.59
De Soto NOCT ASHRAE Perez-Driesse Erbs-Driesse 36.61 19.01 -4.60
De Soto NOCT ASHRAE Perez-Driesse Erbs 36.57 18.96 -4.65
De Soto NOCT Physical Perez-Driesse Erbs-Driesse 36.45 18.86 -4.72
De Soto NOCT Physical Perez-Driesse Erbs 36.42 18.81 -4.76
De Soto PVSyst Martin-Ruiz Perez-Driesse Erbs-Driesse 36.50 18.93 -4.91
De Soto PVSyst ASHRAE Perez-Driesse Erbs-Driesse 36.64 19.06 -4.96
De Soto PVSyst ASHRAE Perez-Driesse Erbs 36.60 19.01 -5.01
De Soto SAPM Martin-Ruiz Perez-Driesse Erbs-Driesse 36.53 18.97 -5.03
De Soto NOCT Physical Perez-Driesse DIRINT 36.48 18.79 -5.04
De Soto SAPM Martin-Ruiz Perez-Driesse Erbs 36.50 18.92 -5.08
De Soto PVSyst Physical Perez-Driesse Erbs-Driesse 36.48 18.91 -5.08
De Soto SAPM ASHRAE Perez-Driesse Erbs-Driesse 36.67 19.10 -5.08
De Soto PVSyst Physical Perez-Driesse Erbs 36.45 18.86 -5.12
De Soto SAPM ASHRAE Perez-Driesse Erbs 36.64 19.05 -5.13
De Soto SAPM Physical Perez-Driesse Erbs-Driesse 36.51 18.95 -5.20
De Soto PVSyst Martin-Ruiz Perez-Driesse DIRINT 36.54 18.87 -5.22
De Soto SAPM Physical Perez-Driesse Erbs 36.48 18.90 -5.25
De Soto PVSyst ASHRAE Perez-Driesse DIRINT 36.66 18.99 -5.29
De Soto SAPM Martin-Ruiz Perez-Driesse DIRINT 36.57 18.91 -5.35

Continued on next page
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PV
Model

Cell
Temp.

Reflection
Loss Transposition Separation

RMSE
(kW)

MAE
(kW)

MBE
(kW)

De Soto PVSyst Physical Perez-Driesse DIRINT 36.52 18.85 -5.39
De Soto SAPM ASHRAE Perez-Driesse DIRINT 36.70 19.03 -5.41
De Soto SAPM Physical Perez-Driesse DIRINT 36.55 18.89 -5.52


