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Abstract
This study aims to develop an Automatic Essay Scoring System (SIMPLE-O) for Japanese
short essays, consisting of five essay questions. SIMPLE-O is designed to enhance scoring
accuracy by leveraging deep learning models such as BERT, BiLSTM, and BiGRU.
The research evaluates deep-level score predictions for each question, rather than only
considering the total score across the five questions, to provide more reliable and accurate
assessments. SIMPLE-O compares student responses with three predefined answer keys
using two similarity measurement methods, Cosine Similarity and Manhattan Distance.
The study employs two datasets developed through data augmentation techniques applied
to lecturer and student responses. The system is implemented using Python, and its
performance is evaluated through analyses of various architectures based on specified
hyperparameters. The best results were achieved using a BERT-BiLSTM architecture
with the Cosine Similarity method, configured with a batch size of 8, 256 hidden state
units, a learning rate of 0.00001, and 100 epochs. The evaluation demonstrated that
this approach achieved a Mean Absolute Percentage Error (MAPE) of 7.230% and an
average score difference of 5.689. This research highlights the potential of SIMPLE-O for
automated scoring of Japanese essays, offering improved accuracy, reliability, and deeper
analytical insights.
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1. Introduction
The exponential growth of Artificial Intelligence (AI) has significantly impacted
various domains, with education being one of the most prominent beneficiaries. One
particularly compelling application within education is Automatic Essay Scoring
(AES), a technology designed to evaluate essay-based answers with accuracy and
objectivity comparable to human graders. AES systems aim to enhance efficiency,
reduce human bias, and ensure consistency in scoring, making them highly valuable
in modern educational settings [1] [2]. Since the advent of AES, starting with Project
Essay Grader by Ellis Page in 1966, these systems have undergone transformative
advancements, shifting from simple feature-based methods to sophisticated machine
learning (ML) and deep learning (DL) approaches. Innovations like BERT, GloVe,
and fastText have demonstrated remarkable accuracy in capturing the semantic and
syntactic nuances of text, marking a new era in AES technology [3] [4].

While AES systems for English-language essays have shown considerable success,
the development of such systems for Japanese poses unique challenges. Japanese is
characterized by its complex grammar, reliance on context, and the coexistence of
multiple writing systems, including kanji, hiragana, and katakana. These features
introduce significant linguistic challenges, making traditional approaches less effective
[5]. Early attempts, such as those utilizing Latent Semantic Analysis (LSA), laid the
groundwork for automated scoring in Japanese but fell short of capturing the intricate
linguistic and cultural elements of the language [6]. Addressing these challenges
requires adopting advanced NLP models capable of handling the nuances of Japanese
text.

Moreover, the Japanese language often omits subjects, relies heavily on context,
and contains particles that subtly shift meaning features not commonly found in
English. As such, models trained on English corpora cannot be directly applied. To
overcome these limitations, this research utilizes pretrained Japanese-specific models
such as cl-tohoku/bert-base-japanese, which are trained on native corpora and better
equipped to process the morphological and syntactic characteristics of Japanese.

This study introduces SIMPLE-O (Sistem Penilaian Esai Otomatis), an AES system
specifically designed for Japanese-language essays. SIMPLE-O leverages cutting-edge
deep learning models, including BERT, BiLSTM, and BiGRU, to evaluate the content
and context of essays with high performance. The system incorporates advanced
similarity evaluation metrics such as Manhattan Distance and Cosine Similarity to
measure the alignment between student responses and reference answers. SIMPLE-O
represents an evolution from earlier systems that relied on LSA, progressing through
various iterations to include neural network architectures. The most recent implemen-
tation of SIMPLE-O integrates CNN-Bidirectional LSTM with Manhattan Distance,
achieving significant performance improvements with a reported error rate of 29%
[7].

Despite the existence of human-based scoring systems that have demonstrated
acceptable reliability, they are not without drawbacks. Manual scoring is time-
consuming, resource-intensive, and subject to variability between graders. In high-
volume academic environments, maintaining consistency becomes increasingly dif-
ficult. Therefore, an automated scoring system such as SIMPLE-O is not intended
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to replace human judgment but rather to augment and standardize the evaluation
process, enabling scalable, objective, and reproducible assessments across institutions.

In practical application, SIMPLE-O can serve as a preliminary scoring tool in
large classroom settings or standardized examinations, where immediate feedback
is crucial. Its deployment could reduce grading turnaround time, assist educators in
identifying learning trends, and provide students with more consistent evaluations
thereby supporting improved educational outcomes.

The development of SIMPLE-O aligns with recent trends in AES research, which
emphasize the integration of advanced NLP techniques and optimization strategies.
Large Language Models (LLMs), such as GPT-4, have demonstrated potential in
providing nuanced feedback and high-quality evaluations [8] [9]. Similarly, opti-
mization methods like Artificial Bee Colony (ABC) algorithms have enhanced model
performance, addressing issues such as catastrophic forgetting and improving pre-
diction accuracy [10]. These advancements underscore the importance of adopting
innovative approaches to optimize AES systems for complex languages like Japanese.

This research aims to achieve two primary objectives, first to develop and optimize
SIMPLE-O as a robust AES system capable of accurately evaluating Japanese essays
while reducing bias and increasing efficiency and second to contribute to the broader
AES field by demonstrating the effectiveness of combining advanced NLP models,
similarity metrics, and optimization techniques. Through its contributions, SIMPLE-
O seeks to support educational standardization by providing an objective and scalable
solution for assessing Japanese essays, ultimately enhancing the learning experience
for students and the evaluation process for educators.

2. Literature Review
2.1 Long-Short TermMemory (LSTM)
LSTM is a specialized type of Recurrent Neural Network (RNN) developed to address
the vanishing gradient problem commonly observed in traditional RNNs. Initially
proposed by Hochreiter and Schmidhuber, LSTM introduces a gating mechanism
to regulate the flow of information through the network. This architecture en-
ables the model to selectively retain, forget, or utilize information based on the task
requirements, making it particularly effective for processing long sequences [11][12].

The primary components of LSTM include the input gate, forget gate, and output
gate, which collectively regulate the flow of information within the network. The
input gate controls the inclusion of new information into the memory cell, determining
how much of the incoming data should update the cell state. The forget gate plays a
crucial role in discarding irrelevant or obsolete information, ensuring that the model
does not accumulate unnecessary data over time. Lastly, the output gate governs the
portion of the cell state to be outputted, influencing subsequent layers and future time
steps. Together, these gates enable LSTM to effectively process and retain relevant
information from sequential data [11] [12].

In this study, we employ BiLSTM as described by Graves [12]. Bidirectional
Long Short-Term Memory (BiLSTM) extends the capabilities of LSTM by enabling
sequential data processing in both forward (chronological) and backward (reverse)
directions.
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Figure 1. Architecture of LSTM Layer [13]

This is achieved by employing two parallel LSTM layers, one for the forward
direction and the other for the backward direction. The outputs from these layers are
combined using concatenation, summation, or other mechanisms, providing a richer
and more comprehensive representation of the sequence [12] [13].

2.2 Gated Recurrent Unit (GRU)
The Gated Recurrent Unit (GRU) is a variant of the Long Short-Term Memory
(LSTM) network designed to mitigate the vanishing gradient problem in Recurrent
Neural Networks (RNNs). Introduced by Cho et al. in 2014 [1], GRU simplifies the
complex structure of LSTM by utilizing only two types of gates: the update gate and
the reset gate. This streamlined architecture enables GRU to achieve computational
efficiency and faster training while effectively modeling sequential data, making it
particularly valuable in Natural Language Processing (NLP) applications [14][15].

Figure 2. Architecture of GRU Layer [15]
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The update gate determines the amount of information from previous time steps
that should be retained and passed to the next state. By controlling the blending
of past and current information, the update gate helps the model preserve relevant
historical context while integrating new input. This balance ensures that the GRU can
maintain long-term dependencies in the sequence without unnecessary redundancy.
The reset gate, on the other hand, governs how much of the past information should be
forgotten at a given time step. When the reset gate value is low, the model effectively
"forgets" prior context, allowing it to focus solely on the new input. This functionality
is particularly useful when previous information becomes irrelevant to the current
computation, enabling the GRU to adapt dynamically to new patterns in the data [14]
[15] [16].

The Bidirectional Gated Recurrent Unit (BiGRU) extends the GRU model by
processing input sequences in both forward and backward directions. This bidirec-
tional approach enables the model to capture dependencies from both past and future
contexts, resulting in a richer understanding of the sequential data. BiGRU achieves
this by employing two GRU layers: one that processes the sequence chronologi-
cally and another that processes it in reverse. The outputs of these layers are then
combined, typically through concatenation, to form a comprehensive representation.
This dual-directional processing is particularly advantageous for tasks like sentiment
analysis, machine translation, and speech recognition, where understanding context
from both directions is crucial. Furthermore, BiGRU retains the computational effi-
ciency of GRU, making it a more resource-friendly alternative to Bidirectional LSTM
(BiLSTM) in environments with limited hardware capabilities [15][16].

2.3 Bidirectional Encoder Representations from Transformers (BERT)
BERT (Bidirectional Encoder Representations from Transformers) is a Transformer-
based model designed to enhance performance in natural language understanding. By
leveraging the self-attention mechanism, BERT can consider all words in a sentence
simultaneously in a bidirectional context (both left-to-right and right-to-left). This
results in richer and more accurate representations compared to previous models such
as RNN or LSTM [17][18].

The training process of BERT is divided into two main stages: pre-training and
fine-tuning. In the pre-training stage, the model is trained on a large unlabeled text
corpus to understand the structure of language and relationships between words. The
two main tasks during pre-training are the Masked Language Model (MLM) and
Next Sentence Prediction (NSP). In MLM, some words in a sentence are randomly
masked, and the model is trained to predict the missing words. Meanwhile, NSP aims
to predict whether two given sentences form a logical pair or not. After pre-training,
the model can be fine-tuned for specific tasks, such as question answering or sentiment
analysis, using labeled data. This fine-tuning is relatively quick and efficient because
the model already has a deep understanding of the language due to its pre-training
on a massive text dataset [18].

One popular adaptation of BERT for the Japanese language is CL-Tohoku-BERT,
specifically designed to handle Japanese text. This model focuses on fine-tuning with
Japanese corpora and can handle unique characteristics of the Japanese language, such
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as kanji, hiragana, and katakana. Additionally, CL-Tohoku-BERT considers nuances
of the Japanese language that are not present in other languages, such as English. The
architecture of CL-Tohoku-BERT follows the basic design of BERT developed by
Google but incorporates adjustments to cater to the characteristics of Japanese text.
This model is available in two variants: BERT-base and BERT-large. In this study,
the BERT-base variant is used, consisting of 12 layers with a hidden state dimension
of 768 and 12 attention heads [19].

The tokenization process in CL-Tohoku-BERT utilizes the WordPiece method,
which splits words into smaller sub-words or tokens. This method is crucial for
handling words that are not in the model’s vocabulary. Tokenization allows the
model to process rare or uncommon words efficiently by breaking them into smaller
understandable units. Embedding in CL-Tohoku-BERT consists of three main com-
ponents: token embeddings, segment embeddings, and position embeddings. Token
embeddings provide numerical representations for each token (word or sub-word)
in the input. Segment embeddings are used to differentiate between the first and
second sentences in the input, which is relevant for tasks like next sentence predic-
tion. Position embeddings provide information about the position of each token in
the word sequence in a sentence. The combination of these three embedding types
enables CL-Tohoku-BERT to learn rich and contextual representations of Japanese
text [18][19][20].

2.4 Distance Metric
Distance metrics are crucial in machine learning for quantifying the closeness or
disparity between data points, essential for clustering, recommendation systems, and
similarity-based tasks. Among these, Manhattan Distance and Cosine Similarity
are widely used due to their unique characteristics and computational efficiency.
Manhattan Distance, also known as the L1-norm, calculates the distance between
two points in an n-dimensional space by summing the absolute differences of their
coordinates. Formally, for two points ‘p = (p1,p2,...,pn)’ and ‘q = (q1,q2,...,qn)’, the
Manhattan Distance is defined as:

D(p, q) = Σn
i=1|pi − qi| (1)

This metric models grid-like movement, such as navigating city blocks where
only horizontal and vertical paths are possible. It is widely used in clustering and
optimization tasks, especially for datasets with sparse or high-dimensional features.
Its straightforward calculation and adaptability make it a reliable choice in various
machine learning applications [21].

Cosine Similarity, in contrast, measures the similarity between two vectors based
on the angle formed between them, rather than their magnitude. It is particularly
prevalent in text analysis and natural language processing (NLP), where documents
or sentences are represented as vectors in a multi-dimensional space. The formula for
Cosine Similarity is as follows:

cos(S1, S2) =
S1.S2

|0S1| 0 |0S2| 0
=

Σn
i=1S1iS2i√

Σn
i=1(S1)2

√
Σn

i=1(S2)2
(2)
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Unlike Manhattan Distance, this metric evaluates vector orientation rather than
magnitude. It is particularly valuable in text analysis and NLP tasks, where semantic re-
lationships between documents or sentences are represented as vectors. By focusing on
directionality, Cosine Similarity effectively captures similarities in high-dimensional
spaces, making it indispensable for tasks like document retrieval and clustering [22].

Manhattan Distance is well-suited for tasks involving physical distances, grid-
based data, or clustering in structured datasets. Cosine Similarity, on the other
hand, excels in text-based applications, such as evaluating sentence embeddings or
comparing document vectors. Together, these metrics provide versatile tools for
improving machine learning performance across diverse scenarios, ensuring accurate
and meaningful insights [21] [22].

3. Methodology
3.1 System Design
The SIMPLE-O system is designed to provide automated scoring for Japanese language
essays. In this study, the system compares student responses with three reference
answers to determine scores based on the degree of similarity. Each question is
processed separately, enabling the system to accommodate the unique characteristics
of each question. The focus is on short-answer essay questions, emphasizing realibility
in the responses. The system outputs predicted scores, which are then compared with
actual scores provided by instructors to analyze the differences.

To achieve this functionality, SIMPLE-O leverages deep learning models trained
on datasets generated through data augmentation processes. These datasets are de-
signed to enhance data representation and handle a wide range of answer variations.
The similarity assessment is conducted using two approaches: Manhattan Distance
and Cosine Similarity. Each similarity measurement method operates with a dedicated
model to identify the most effective deep learning configuration for each approach.

The system architecture employs a combination of BiLSTM and BiGRU models
to capture the temporal and semantic nuances of text responses more comprehensively.
Before evaluation begins, student and reference answers undergo a pre-processing
stage that includes normalization to remove irrelevant characters and ensure text
consistency. Text is tokenized using BERT, transforming each word into tokens and
embedding them to produce vector representations through sentence embeddings.
This step allows the model to precisely capture the contextual meaning of each
response.

After embedding, the vectorized data is trained using models configured with
optimized hyperparameters to enhance system performance. The training process
incorporates LSTM or GRU layers with Attention Layers to improve the contextual
understanding of the models. Separate model instances are created for each essay
question, tailored to the specific characteristics of the questions. Various training
scenarios are employed with adjusted parameters, such as batch size, the number of
hidden state units, and learning rates, to identify the optimal parameter combination.

Model evaluation is conducted using two primary methods, Manhattan Distance
which measures linear differences between vectors, and Cosine Similarity which eval-
uates angular similarity. During testing, student responses are used as evaluation data
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to validate the system’s generalization capabilities. The automated scores generated
by SIMPLE-O are compared with scores from human raters to assess the model’s
performance. The differences are analyzed to evaluate overall system accuracy and
provide recommendations for further iterations.

Through this approach, SIMPLE-O aims to deliver accurate, consistent, and
reliable essay scoring, streamlining the academic evaluation process, particularly
for Japanese language essays. By systematically comparing multiple models and
distance metrics across individualized question sets, SIMPLE-O seeks not only to
score accurately, but also to provide adaptable configurations that can be generalized
across various test formats and educational institutions.

Figure 3. Flowchart of SIMPLE-O Design

3.2 Data Collection & Data Preparation
The development of SIMPLE-O in this study utilized data derived from the previous
iterations of the system. This dataset was sourced from the Japanese Studies Program
at the Faculty of Humanities, University of Indonesia [23]. The dataset consisted of
38 student essay responses, reference answers prepared by instructors, and augmented
data. The student responses addressed five essay questions, while the augmented data
consisted of modified versions of both student and instructor answers to create new
variations for training purposes. Additionally, this study manually included data with
a score of 0, such as irrelevant Japanese words, empty answers, and other similar
examples.
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The training data in this study encompassed augmented data derived from in-
structor reference answers and all student responses, irrespective of their scores. This
approach aimed to evaluate the impact of data quality and diversity on the model’s
performance in providing automatic essay assessments. Table 1 outlines the scenarios
used to generate augmented data in this study.

The augmentation process was conducted using a Python-based program specifi-
cally designed for this research. The augmented data was structured to exhibit varying
levels of error, ranging from 0% to 100%. By inserting characters or replacing words
randomly, the program generated phrases closely resembling the original input to
minimize significant deviations. The resulting augmented sentences often contained
intentional structural inaccuracies, thereby enriching the dataset with diverse linguis-
tic patterns. For example, the program created sentences with structural imperfections
to simulate real-world variations in language use. A detailed pseudocode of this aug-
mentation process, which illustrates its systematic approach, is presented in Figure
2.

Table 1. Data Augmentation Scenario

Data Type Initial Score Target Score

Minimum

Instructor Answer Key Data 100 10

Student Answer (Score = 100) 100 10

Student Answer (Score = 95) 95 35

Student Answer (Score = 90) 90 40

Student Answer (Score = 85) 85 35

Student Answer (Score = 80) 80 40

Student Answer (Score = 75) 75 35

Student Answer (Score = 70) 70 40

Student Answer (Score = 65) 65 35

Student Answer (Score = 60) 60 40

Student Answer (Score = 55) 55 35

Student Answer (Score = 50) 50 40

Student Answer (Score = 25) 25 15

Dataset Score 0 - -

Beyond expanding data volume, the augmentation strategy in this study was
carefully designed to reflect the linguistic challenges specific to the Japanese language.
Japanese exhibits a unique subject-object-verb (SOV) structure, strict particle usage,
and multiple levels of politeness, which can lead to subtle but significant variations
in meaning. Furthermore, its writing system consisting of kanji, hiragana, and
katakana introduces layers of complexity, particularly for non-native speakers. By
introducing structural and lexical errors during augmentation, this research aimed
to simulate common and uncommon mistakes made by students, such as missing
particles, inappropriate character choice, or incorrect sentence.

This augmentation strategy played a critical role in enhancing the model’s ability
to handle a wide array of student responses, ensuring better generalization during
evaluation. By including a broad spectrum of data, the model’s capacity to provide
accurate and contextually relevant essay scoring was significantly improved.
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Figure 4. Pseudocode for Data Augmentation

3.3 Data Pre-processing
The pre-processing stage is crucial for preparing textual data in a structured and
uniform format, ensuring that SIMPLE-O processes the input effectively to produce
optimal outputs. This process begins with punctuation removal, where all irrelevant
punctuation marks such as "◦" \ ", " ⌈ " , "⌋ ", "/’, "(", ")", ",", ".", "?", and "!" are
eliminated from the text. By removing these elements, the system reduces noise and
focuses solely on the meaningful content of the text. Following punctuation removal,
normalization is performed to identify and remove duplicate entries within the text.
This step minimizes redundancy, ensuring that the dataset remains high in quality
and free of repetitive information. Such normalization enhances the reliability of
subsequent data analysis and processing.

By integrating these stages, the pre-processing pipeline ensures that SIMPLE-
O can efficiently handle text data while maintaining both syntactic and semantic
integrity. This robust preparation process lays the groundwork for accurate scoring
and evaluation, making it a critical component of the system.

3.4 BERT Embedding
In this study, we utilize BERT for embedding, specifically using the pre-trained model
’cl-tohoku/BERT-base-japanese’ for processing Japanese language text. The embed-
ding process is preceded by tokenization, where each input is first tokenized using
the BERTTokenizer. During tokenization, the input’s length is adjusted according
to a predefined maximum length. If the input exceeds this maximum, truncation is
performed, effectively shortening the input. Conversely, if the input is shorter than
the specified length, padding is applied, adding special tokens to ensure the input
reaches the desired length.

Once tokenization is complete, BERT proceeds with the embedding phase. This
step is essential for converting tokens into dense vector representations that capture
the semantic meaning of the input text. BERT employs three types of embeddings
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simultaneously: token embedding, segment embedding, and position embedding.
These three embeddings are combined and passed through the BERT encoder block,
which is composed of multiple transformer layers. The encoder leverages self-attention
mechanisms to assess the relationships between tokens within the text, enabling BERT
to capture contextual dependencies across the entire sequence. Each attention layer
determines the influence of one token on another, which facilitates a more nuanced
understanding of the text as a whole.

The transformer encoder not only considers individual tokens but also identifies
intricate patterns in sentence structure that influence overall meaning. This enables
BERT to generate a richer, context-aware representation of the input text, which is
vital for various natural language processing tasks, including classification, information
extraction, and translation.

3.5 Model Architecture
This study investigates four distinct model architectures, each designed to assess text
similarity in Japanese. All models integrate BERT with different recurrent neural net-
work (RNN) variants and distance metric, as illustrated in Figure 3, which represents
the general architecture for all four models.

Model 1 and Model 2 explore the use of BERT with either BiLSTM or BiGRU for
text representation and contextual understanding, with the key distinction being the
choice of distance metric. Both models use Cosine Similarity as the distance metric,
where BERT generates vector representations of the text, and BiLSTM or BiGRU
captures contextual information. An attention layer is applied to highlight important
parts of the input before calculating the similarity. Model 1 uses BiLSTM, while
Model 2 replaces BiLSTM with the more computationally efficient BiGRU, but both
models rely on Cosine Similarity to assess the angular distance between vectors.

Model 3 and Model 4 follow a similar structure to the previous models, but they
employ Manhattan Distance as the distance metric instead of Cosine Similarity. In
these models, BERT is combined with either BiLSTM (Model 3) or BiGRU (Model
4), and an attention layer is applied before calculating Manhattan Distance. Manhattan
Distance measures the sum of absolute differences between vector components, pro-
viding a different approach to assessing text similarity. The main difference between
these models is the choice of neural architecture, with Model 3 using BiLSTM and
Model 4 using BiGRU, but both models evaluate similarity based on Manhattan
Distance.

Figure 5. Architecture Diagram of the Proposed Model

The goal of these models is to explore various combinations of neural architectures
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and distance metrics, including Cosine Similarity and Manhattan Distance, to deter-
mine the most effective model for assessing text similarity in the context of Japanese
language processing.

3.6 Experiment Scenario
The evaluation of SIMPLE-O was conducted through various training scenario varia-
tions to identify the optimal configuration for assessing student essays. In this process,
hyperparameter settings were varied to determine the configuration that minimizes
performance discrepancies. Hyperparameter tuning was aimed at optimizing model
performance during training, focusing on scenarios with low, medium, and high com-
putational capacity. The goal was to assess how different computational conditions
impact the model’s ability to generate accurate predictions. Details of the hyperpa-
rameters used in the experiments are provided in Table 2. These configurations were
selected to evaluate the model’s robustness across varying hardware capabilities and to
fine-tune its ability to achieve consistent performance across diverse computational
environments.

Table 2. Scenario Experiment

Scenario Batch Size Epoch Learning Rate Hidden State Unit

1 32 15 0.01 128

2 16 30 0.001 256

3 16 60 0.00001 128

4 8 100 0.00001 256

3.7 Metric Evaluation
Metric evaluation is a method used to assess the performance of a machine learning
model. In this study, the model’s performance was evaluated using residual error,
which is the absolute difference between the actual value (y) and the predicted value
(ŷ) generated by the system. The formula for calculating residual error is as follows:

ResidualError = |y − ŷ| (3)

Additionally, another metric used to evaluate the model’s performance is Agree-
ment with Human Rater. This metric measures the agreement between the system’s
predicted value and the human rater’s value. The formula for calculating Agreement
with Human Rater is:

Agrement with Human Rater = 100 − Residual Error (4)

To further compare with previous studies, the total score (comprising questions
1 through 5) was also evaluated using two additional metrics: Absolute Percentage
Error (APE) and Mean Absolute Percentage Error (MAPE). Absolute Percentage
Error (APE) measures the percentage error by comparing the absolute difference
between the system’s predicted value and the human rater’s value, normalizing it by
the human rater’s value, and multiplying by 100 to obtain the percentage error. The
formula for APE is:
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%Error =
|ŷ − y|

y
x100 (5)

Mean Absolute Percentage Error (MAPE) is the average of the APE over all in-
stances in the dataset, providing an overall measure of the model’s prediction accuracy.
The formula for MAPE is:

%MAPE =
100%

n

n∑
i=1

|ŷ − y|
y

(6)

These metrics were employed to evaluate and compare the model’s performance,
offering insights into the accuracy of the model and the effectiveness of different
evaluation scenarios.

4. Result and Discussion
After the preprocessing stage, the number of data points in the dataset for each question
used in the embedding and training phases is as follows:

• Question 1: 9,561 data points
• Question 2: 9,660 data points
• Question 3: 9,246 data points
• Question 4: 9,522 data points
• Question 5: 9,591 data points

The dataset was split with a 70:30 ratio for training and validation. Randomization
was applied to the input data to ensure that the model does not only learn specific
patterns but can also generalize better to new data during the testing phase.

This study employed four scenarios for each model, with each scenario involving
four experiments. Each experiment used 38 data points from students’ answers as test
data. In every scenario, combinations of several hyperparameters were applied with
the primary goal of achieving the best prediction accuracy. Each experiment involved
five questions, resulting in five instances of deep learning models for each experiment.

The system’s results were compared with test data to predict scores for each ques-
tion, which were then aggregated to compute final results. The system’s performance
was evaluated using the residual error metric, which calculates the absolute difference
between the system’s predicted scores and the scores assigned by human raters. Ad-
ditionally, the total score evaluation was conducted using absolute percentage error
(APE) and mean absolute percentage error (MAPE) metrics.

Tables 3 through 6 present the performance comparisons of various scenarios
for the four model architectures proposed in this study. Table 3 summarizes the
best results for each scenario using the BERT-BiLSTM architecture with Cosine
Similarity, while Table 4 highlights the results for the BERT-BiGRU architecture
using the same similarity metric. Similarly, Table 5 details the best results for each
scenario with the BERT-BiLSTM architecture utilizing Manhattan Distance, and
Table 6 focuses on the BERT-BiGRU architecture with Manhattan Distance.
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Table 3. Results of All Scenarios in the BERT-BiLSTM-Cosine Similarity Architecture

BERT-BiLSTM-Cosine Similiarity

Scenario Question 1 Question 2 Question 3 Question 4 Question 5 Avg Residual Error
Agreement With

Human Rater

1 9.684 16.184 9.868 17.184 12.421 13.068 86.932

2 6.289 6.500 6.184 8.026 12.395 7.879 92.121

3 8.316 8.737 9.000 9.184 11.711 9.390 90.61

4 4.842 5.500 5.868 5.342 8.368 5.984 94.016

Table 4. Results of All Scenarios in the BERT- BiGRU -Cosine Similarity Architecture

BERT-BiGRU-Cosine Similiarity

Scenario Question 1 Question 2 Question 3 Question 4 Question 5 Avg Residual Error
Agreement With

Human Rater

1 7.079 14.500 8.816 14.632 11.342 11.274 88.726

2 5.868 7.737 5.868 10.737 11.763 8.395 91.605

3 8.684 8.684 9.184 10.474 12.711 9.947 90.053

4 6.395 6.289 6.500 6.342 9.316 6.968 93.032

Table 5. Results of All Scenarios in the BERT-BiLSTM-Manhattan Distance Architecture

BERT-BiLSTM-Manhattan Distance

Scenario Question 1 Question 2 Question 3 Question 4 Question 5 Avg Residual Error
Agreement With

Human Rater

1 15.921 19.737 20.026 24.053 16.053 19.158 80.842

2 8.421 7.842 9.184 9.000 11.316 9.153 90.847

3 11.184 9.711 14.263 11.553 14.947 12.332 87.668

4 6.789 7.000 10.237 7.000 13.026 8.810 91.19

Table 6. Results of All Scenarios in the BERT-BiGRU-Manhattan Distance Architecture

BERT-BiGRU-Manhattan Distance

Scenario Question 1 Question 2 Question 3 Question 4 Question 5 Avg Residual Error
Agreement With

Human Rater

1 15.526 16.553 17.526 22.211 19.658 18.295 81.705

2 7.658 8.921 9.184 10.263 11.447 9.495 90.505

3 13.105 11.237 14.289 17.079 16.053 14.353 85.647

4 7.105 6.763 10.526 9.474 14.263 9.626 90.374

For the BERT-BiLSTM with Cosine Similarity architecture, the Agreement
with Human Rater scores, as shown in Table 3, are 86.932 for Scenario 1, 92.121
for Scenario 2, 90.610 for Scenario 3, and 94.016 for Scenario 4. Meanwhile, Table
4 presents the results for the BERT-BiGRU with Cosine Similarity architecture,
with scores of 88.726 for Scenario 1, 91.605 for Scenario 2, 90.053 for Scenario 3,
and 93.032 for Scenario 4. In comparison, the BERT-BiLSTM with Manhattan
Distance architecture, as summarized in Table 5, yields Agreement with Human Rater
scores of 80.842, 90.847, 87.668, and 91.190 for Scenarios 1 through 4, respectively.
Lastly, Table 6 shows the results for BERT-BiGRU with Manhattan Distance, with
corresponding scores of 81.705, 90.505, 85.647, and 90.374.

Overall, the highest Agreement with Human Rater score across all architectures
and scenarios is achieved in Scenario 4 of the BERT-BiLSTM with Cosine Similarity
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model, with a score of 94.016 and an average residual error of 5.984. This result marks
it as the best-performing scenario in this study.

The experiments demonstrated that high-computation hyperparameter configu-
rations, such as those in scenario 4 for each model architecture, consistently yielded
better performance compared to the other three scenarios. For example, in the BERT-
BiLSTM-Cosine Similarity architecture, the average residual error for scenario 4 was
5.984, which is lower than the averages for scenarios 1, 2, and 3, which were 13.068,
7.879, and 9.390, respectively. This trend was observed across other architectures as
well. These results indicate that the augmented dataset effectively mirrors the testing
data.

The experimental results also showed that scenarios with a hidden state unit config-
uration of 256 performed better than other configurations. Scenarios 2 and 4, which
utilized 256 hidden state units, consistently recorded lower average residual error
values compared to configurations with smaller hidden state units. This advantage
can be attributed to the optimal representational capacity of the model, enabling it to
capture patterns and relationships in the data without becoming overly complex.

Regarding architecture, BiLSTM models demonstrated superior performance
compared to BiGRU models. This can be observed from the lower average residual
error values in scenarios involving BiLSTM compared to BiGRU. This advantage
can be explained by the more complex structure of BiLSTM, which features two
LSTM layers that read data in both forward and backward directions, enabling
the model to capture global context in Japanese essays. In contrast, BiGRU, while
more computationally efficient, tends to lose critical information due to its simpler
mechanism.

For distance metrics, Cosine Similarity consistently outperformed Manhattan
Distance in all experiments. Cosine Similarity measures the similarity between vectors
based on their angles, while Manhattan Distance only measures absolute distances.
This makes Cosine Similarity more suitable for tasks involving textual data with
complex vector distributions.

Table 7 provides detailed results of the predicted scores for 38 students in the
experiment, showcasing the largest agreement with human raters in Scenario 4. The
’MO’ column represents the model’s output scores, indicating the values calculated by
the machine, while the ’HR’ column shows the scores given by human raters. From
the evaluation of the total student scores, the average residual error in this scenario
was 5.689. The largest residual error was recorded for student number 11, with an
error of 17, and the smallest residual error was for student number 8, with an error
of 0.8. In terms of percentage error evaluation, the average percentage error was
7.230%. The highest percentage error occurred for student number 11, with an error
of 17.53%, while the lowest percentage error was found for student number 15, at
3.45%.

The success of this study can be attributed to the combination of transformer-
based architectures such as BERT and the Cosine Similarity metric. BERT’s ability to
capture contextual information in text data, along with Cosine Similarity’s capability to
measure vector similarity proportionally, enabled the model to achieve more accurate
predictions.
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Table 7. Result of Scenario 4

Question 1 Question 1 Question 1 Question 1 Question 1 Total Score

-2*No MO HR MO HR MO HR MO HR MO HR MO HR Residual

Error
APE

1 69 70 18 25 92 100 73 80 86 100 67.6 75 7.4 9.87 %

2 88 90 88 90 87 90 85 90 73 90 84.2 90 5.8 6.44 %

3 82 90 87 90 89 95 18 25 36 25 62.4 65 2.6 4.00 %

4 94 100 69 70 88 95 68 75 76 90 79 86 7 8.14 %

5 82 85 0 0 82 85 90 95 65 75 63.8 68 4.2 6.18 %

6 91 95 93 100 93 100 89 95 91 95 91.4 97 5.6 5.77 %

7 23 25 79 80 83 90 21 25 66 65 54.4 57 2.6 4.56 %

8 24 25 30 25 0 0 1 0 24 25 15.8 15 0.8 5.33 %

9 95 100 82 85 83 90 23 25 81 85 72.8 77 4.2 5.45 %

10 87 90 90 95 81 90 79 85 82 95 83.8 91 7.2 7.91 %

11 91 95 27 90 99 100 94 100 89 100 80 97 17 17.53 %

12 85 90 86 90 89 100 92 100 84 85 87.2 93 5.8 6.24 %

13 100 100 90 95 87 90 93 100 92 95 92.4 96 3.6 3.75 %

14 93 100 80 85 94 100 24 25 77 90 73.6 80 6.4 8.00 %

15 88 90 80 85 84 85 93 100 75 75 84 87 3 3.45 %

16 86 95 77 80 94 100 74 80 71 85 80.4 88 7.6 8.64 %

17 87 95 88 95 92 100 92 100 93 100 90.4 98 7.6 7.76 %

18 89 90 76 80 91 100 100 100 84 100 88 94 6 6.38 %

19 87 90 94 100 92 100 85 90 77 100 87 96 9 9.38 %

20 86 90 95 100 92 100 93 100 94 100 92 98 6 6.12 %

21 92 100 80 85 94 100 24 25 71 85 72.2 79 6.8 8.61 %

22 91 95 49 50 93 100 88 90 59 60 76 79 3 3.80 %

23 77 80 32 35 91 100 89 95 79 95 73.6 81 7.4 9.14 %

24 87 95 51 50 86 90 51 55 54 60 65.8 70 4.2 6.00 %

25 86 90 62 65 82 85 78 85 72 75 76 80 4 5.00 %

26 60 60 57 50 18 25 32 25 36 25 40.6 37 3.6 9.73 %

27 70 75 68 70 80 85 94 100 67 75 75.8 81 5.2 6.42 %

28 19 25 24 25 20 25 78 85 24 25 33 37 4 10.81 %

29 92 100 92 100 84 90 1 0 90 95 71.8 77 5.2 6.75 %

30 93 100 78 80 86 90 93 100 58 80 81.6 90 8.4 9.33 %

31 67 75 19 25 91 95 79 85 73 85 65.8 73 7.2 9.86 %

32 65 65 20 25 65 70 20 25 27 25 39.4 42 2.6 6.19 %

33 90 100 94 100 93 100 77 85 91 95 89 96 7 7.29 %

34 93 100 51 55 94 100 92 100 58 80 77.6 87 9.4 10.80 %

35 89 95 85 90 92 100 86 90 92 95 88.8 94 5.2 5.53 %

36 94 100 83 85 93 100 88 95 59 60 83.4 88 4.6 5.23 %

37 93 100 21 25 93 100 19 25 68 65 58.8 63 4.2 6.67 %

38 86 95 87 90 85 90 19 25 59 60 67.2 72 4.8 6.67 %

Avg 80.8

16

85.6

58

65.3

16

70.1

32

82.4

21

88.2

89

65.6

58

70.5

26

69.8

16

76.7

11

72.8

05

78.2

63

5.6

89
7.230 %

Additionally, focused data augmentation tailored to the characteristics of students’
answers improved the model’s robustness in handling variations in writing styles and
errors in Japanese essay data. The average residual error for 38 students was 5.689,
indicating the difference between the predicted scores by the system and the scores
given by human raters. Moreover, the Mean Absolute Percentage Error (MAPE) for
Scenario 4 was 7.230%. These results represent a significant advancement compared
to previous studies, which recorded an average MAPE of 29% [7].
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5. Conclusion
This study demonstrates the effectiveness of combining transformer-based architec-
tures like BERT with deep learning models such as BiLSTM and BiGRU, alongside
advanced similarity metrics like Cosine Similarity, in improving the accuracy of
automatic essay scoring systems. The results show that the optimal configuration,
particularly in Scenario 4, yielded significantly better performance compared to other
configurations, with the BERT-BiLSTM-Cosine Similarity architecture achieving
the lowest residual error of 5.689. In the evaluation of individual questions, the best
residual error for each question under Scenario 4 was as follows: question 1 achieved
a residual error of 4.842, question 2 reached 5.50, question 3 was 5.868, question 4
scored 5.342, and question 5 had a residual error of 8.368. These results not only illus-
trate the power of deep learning for essay scoring but also highlight the importance
of hyperparameter tuning, such as selecting the right number of hidden state units, in
maximizing model performance.

The study also demonstrated the effectiveness of data augmentation tailored to
student responses, which enhanced the model’s ability to generalize across different
writing styles and levels of proficiency. In comparison with previous studies, which
reported an average MAPE of 29% [7], the proposed system’s MAPE of 7.230% marks
a significant advancement, providing a strong foundation for future research in this
field.

The experimental results also suggest that BiLSTM outperforms BiGRU in terms of
predictive accuracy, likely due to its more complex architecture that can capture richer
contextual information. Additionally, Cosine Similarity consistently outperformed
Manhattan Distance, confirming its superior capability in handling the nuanced nature
of textual data.

Despite the promising results, this study is not without limitations. The dataset,
while augmented, remains relatively small and may not fully represent the diversity
of real-world student responses. Furthermore, the use of pre-trained BERT models
could introduce bias, particularly toward essays that follow more formal or structurally
rigid patterns, potentially disadvantaging creative or unconventional writing styles.

Looking ahead, future work should focus on exploring larger datasets, incor-
porating more granular linguistic features, and examining real-time essay scoring
applications. Using other augmentation techniques, such as back-translation or para-
phrasing, could enrich the dataset and improve model robustness. Further exploration
of other transformer models, such as GPT-based models, T5, or RoBERTa, could offer
additional insights into improving essay scoring accuracy. The promising results of
this study pave the way for further advancements in automatic essay scoring systems,
particularly for languages like Japanese, where capturing intricate textual nuances is
essential.
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